Matsumoto zeta function

In mathematics, Matsumoto zeta functions are a type of zeta function introduced by Kohji Matsumoto in 1990. They are functions of the form

:\phi(s)=\prod_{p}\frac{1}{A_p(p^{-s})}

where p is a prime and Ap is a polynomial.

References

  • {{Citation | last1=Matsumoto | first1=Kohji | title=Analytic number theory ({T}okyo, 1988) | doi=10.1007/BFb0097134 | publisher=Springer-Verlag | location=Berlin, New York | series=Lecture Notes in Math. | mr=1071754 | year=1990 | volume=1434 | chapter=Value-distribution of zeta-functions| pages=178–187 | isbn=978-3-540-52787-9 }}

Category:Zeta and L-functions

{{numtheory-stub}}