Medial pentagonal hexecontahedron

{{Short description|Star polyhedron with 60 faces}}

{{Uniform polyhedra db|Uniform dual polyhedron stat table|Siddid}}

In geometry, the medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.

Proportions

Denote the golden ratio by {{mvar|φ}}, and let \xi\approx -0.409\,037\,788\,014\,42 be the smallest (most negative) real zero of the polynomial P=8x^4-12x^3+5x+1. Then each face has three equal angles of \arccos(\xi)\approx 114.144\,404\,470\,43^{\circ}, one of \arccos(\varphi^2\xi+\varphi)\approx 56.827\,663\,280\,94^{\circ} and one of \arccos(\varphi^{-2}\xi-\varphi^{-1})\approx 140.739\,123\,307\,76^{\circ}. Each face has one medium length edge, two short and two long ones. If the medium length is 2, then the short edges have length

1 + \sqrt{\frac{1-\xi}{\varphi^3-\xi}} \approx 1.550\,761\,427\,20,

and the long edges have length

1 + \sqrt{ \frac{1-\xi}{-\varphi^{-3}-\xi}}\approx 3.854\,145\,870\,08.

The dihedral angle equals \arccos\left(\tfrac{\xi}{\xi+1}\right) \approx 133.800\,984\,233\,53^{\circ}. The other real zero of the polynomial {{mvar|P}} plays a similar role for the medial inverted pentagonal hexecontahedron.

References

  • {{Citation | last1=Wenninger | first1=Magnus | author1-link=Magnus Wenninger | title=Dual Models | publisher=Cambridge University Press | isbn=978-0-521-54325-5 | mr= 730208| year=1983}}