Meixner–Pollaczek polynomials
{{distinguish|Meixner polynomials}}
{{More citations needed|date=March 2016}}
In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P{{su|b=n|p=(λ)}}(x,φ) introduced by {{harvs|txt|authorlink=Josef Meixner|last=Meixner|year=1934}}, which up to elementary changes of variables are the same as the Pollaczek polynomials P{{su|b=n|p=λ}}(x,a,b) rediscovered by {{harvs|txt|authorlink=Felix Pollaczek|last=Pollaczek|year=1949}} in the case λ=1/2, and later generalized by him.
They are defined by
:
:
Examples
The first few Meixner–Pollaczek polynomials are
:
:
:
Properties
=Orthogonality=
The Meixner–Pollaczek polynomials Pm(λ)(x;φ) are orthogonal on the real line with respect to the weight function
:
and the orthogonality relation is given byKoekoek, Lesky, & Swarttouw (2010), p. 213.
:
=Recurrence relation=
The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relationKoekoek, Lesky, & Swarttouw (2010), p. 213.
:
=Rodrigues formula=
The Meixner–Pollaczek polynomials are given by the Rodrigues-like formulaKoekoek, Lesky, & Swarttouw (2010), p. 214.
:
where w(x;λ,φ) is the weight function given above.
=Generating function=
The Meixner–Pollaczek polynomials have the generating functionKoekoek, Lesky, & Swarttouw (2010), p. 215.
:
See also
References
{{Reflist}}
- {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
- {{dlmf|id=18.35|title=Pollaczek Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
- {{Citation | last1=Meixner | first1=J. | title=Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion | doi=10.1112/jlms/s1-9.1.6 | year=1934 | journal=J. London Math. Soc. | volume=s1-9 | pages=6–13}}
- {{Citation | last1=Pollaczek | first1=Félix | title=Sur une généralisation des polynomes de Legendre | url=http://gallica.bnf.fr/ark:/12148/bpt6k31801/f1363 | mr=0030037 | year=1949 | journal=Les Comptes rendus de l'Académie des sciences | volume=228 | pages=1363–1365}}
{{DEFAULTSORT:Meixner-Pollaczek polynomials}}