Milnor conjecture (K-theory)

{{short description|Theorem describing the Milnor K-theory (mod 2) by means of the Galois cohomology}}

{{Other uses|Milnor conjecture (disambiguation){{!}}Milnor conjecture}}

In mathematics, the Milnor conjecture was a proposal by {{harvs|txt|first=John|last= Milnor|year=1970|authorlink=John Milnor}} of a description of the Milnor K-theory (mod 2) of a general field F with characteristic different from 2, by means of the Galois (or equivalently étale) cohomology of F with coefficients in Z/2Z. It was proved by {{harvs|txt|authorlink=Vladimir Voevodsky|first=Vladimir|last= Voevodsky|year1=1996|year2=2003a|year3=2003b}}.

Statement

Let F be a field of characteristic different from 2. Then there is an isomorphism

:K_n^M(F)/2 \cong H_{\acute{e}t}^n(F, \mathbb{Z}/2\mathbb{Z})

for all n ≥ 0, where KM denotes the Milnor ring.

About the proof

The proof of this theorem by Vladimir Voevodsky uses several ideas developed by Voevodsky, Alexander Merkurjev, Andrei Suslin, Markus Rost, Fabien Morel, Eric Friedlander, and others, including the newly minted theory of motivic cohomology (a kind of substitute for singular cohomology for algebraic varieties) and the motivic Steenrod algebra.

Generalizations

The analogue of this result for primes other than 2 was known as the Bloch–Kato conjecture. Work of Voevodsky and Markus Rost yielded a complete proof of this conjecture in 2009; the result is now called the norm residue isomorphism theorem.

References

  • {{Citation | last1=Mazza | first1=Carlo | last2=Voevodsky | first2=Vladimir | author2-link=Vladimir Voevodsky | last3=Weibel | first3=Charles | title=Lecture notes on motivic cohomology | url=http://math.rutgers.edu/~weibel/motiviclectures.html | publisher=American Mathematical Society | location=Providence, R.I. | series=Clay Mathematics Monographs | isbn=978-0-8218-3847-1 | mr=2242284 | year=2006 | volume=2 | author3-link=Charles Weibel}}
  • {{Citation | last1=Milnor | first1=John Willard | author1-link=John Milnor | title=Algebraic K-theory and quadratic forms | doi=10.1007/BF01425486 | mr=0260844 | year=1970 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=9 | pages=318–344 | issue=4| bibcode=1970InMat...9..318M | s2cid=13549621 }}
  • {{citation | last1=Voevodsky | first1=Vladimir | author1-link=Vladimir Voevodsky | url=http://www.math.uiuc.edu/K-theory/0170 | title=The Milnor Conjecture | year=1996 | series=Preprint}}
  • {{Citation | last1=Voevodsky | first1=Vladimir | author1-link=Vladimir Voevodsky | title=Reduced power operations in motivic cohomology | url=http://www.numdam.org/item?id=PMIHES_2003__98__1_0 | doi=10.1007/s10240-003-0009-z | mr=2031198 | year=2003a| journal=Institut des Hautes Études Scientifiques. Publications Mathématiques | issn=0073-8301 | issue=98 | pages=1–57 | volume=98| arxiv=math/0107109 | s2cid=8172797 }}
  • {{Citation | last1=Voevodsky | first1=Vladimir | author1-link=Vladimir Voevodsky | title=Motivic cohomology with Z/2-coefficients | url=http://www.numdam.org/item?id=PMIHES_2003__98__59_0 | doi=10.1007/s10240-003-0010-6 | mr=2031199 | year=2003b | journal=Institut des Hautes Études Scientifiques. Publications Mathématiques | issn=0073-8301 | issue=98 | pages=59–104 | volume=98| s2cid=54823073 }}

Further reading

  • {{citation | last=Kahn | first=Bruno | chapter=La conjecture de Milnor (d'après V. Voevodsky) | language=French | editor1-last=Friedlander | editor1-first=Eric M. | editor2-last=Grayson | editor2-first=D.R. | title=Handbook of K-theory | volume=2 | pages=1105–1149 | publisher=Springer-Verlag | year=2005 | isbn=3-540-23019-X | zbl=1101.19001 }}

Category:K-theory

Category:Conjectures that have been proved

Category:Theorems in algebraic topology