Minimal subtraction scheme
{{Short description|Renormalization scheme in quantum field theory}}
{{Renormalization and regularization}}
In quantum field theory, the minimal subtraction scheme, or MS scheme, is a particular renormalization scheme used to absorb the infinities that arise in perturbative calculations beyond leading order, introduced independently by Gerard 't Hooft and Steven Weinberg in 1973.{{cite journal
|first=G.|last='t Hooft |authorlink=Gerard 't Hooft
|year=1973
|title=Dimensional regularization and the renormalization group
|journal=Nuclear Physics B
|volume=61 |pages=455–468
|doi=10.1016/0550-3213(73)90376-3
|bibcode = 1973NuPhB..61..455T |url=https://cds.cern.ch/record/880603/files/CM-P00060417.pdf}}{{cite journal
|last1=Weinberg |first1=S. |author1-link=Steven Weinberg
|year=1973
|title=New Approach to the Renormalization Group
|journal=Physical Review D
|volume=8 |issue=10 |pages=3497–3509
|doi=10.1103/PhysRevD.8.3497
|bibcode = 1973PhRvD...8.3497W }} The MS scheme consists of absorbing only the divergent part of the radiative corrections into the counterterms.
In the similar and more widely used modified minimal subtraction, or MS-bar scheme (), one absorbs the divergent part plus a universal constant that always arises along with the divergence in Feynman diagram calculations into the counterterms. When using dimensional regularization, i.e. , it is implemented by rescaling the renormalization scale: , with the Euler–Mascheroni constant.
References
= Other =
- {{cite journal
|last1=Bardeen | first1=W.A. | author1-link=William A. Bardeen
|last2=Buras | first2=A.J. | author2-link=Andrzej Buras
|last3=Duke | first3=D.W.
|last4=Muta | first4=T.
|year=1978
|title=Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories
|journal=Physical Review D
|volume=18 | pages=3998–4017 | issue=11
|doi=10.1103/PhysRevD.18.3998
|bibcode = 1978PhRvD..18.3998B |url=https://cds.cern.ch/record/870641/files/c78-08-23-p234.pdf}}
- {{cite book
|last1=Collins | first1=J.C.
|year=1984
|title=Renormalization
|series=Cambridge Monographs on Mathematical Physics
|publisher=Cambridge University Press
|isbn=978-0-521-24261-5
|mr=778558
}}
Category:Renormalization group
{{quantum-stub}}
{{statisticalmechanics-stub}}