Minimal subtraction scheme

{{Short description|Renormalization scheme in quantum field theory}}

{{Renormalization and regularization}}

In quantum field theory, the minimal subtraction scheme, or MS scheme, is a particular renormalization scheme used to absorb the infinities that arise in perturbative calculations beyond leading order, introduced independently by Gerard 't Hooft and Steven Weinberg in 1973.{{cite journal

|first=G.|last='t Hooft |authorlink=Gerard 't Hooft

|year=1973

|title=Dimensional regularization and the renormalization group

|journal=Nuclear Physics B

|volume=61 |pages=455–468

|doi=10.1016/0550-3213(73)90376-3

|bibcode = 1973NuPhB..61..455T |url=https://cds.cern.ch/record/880603/files/CM-P00060417.pdf}}{{cite journal

|last1=Weinberg |first1=S. |author1-link=Steven Weinberg

|year=1973

|title=New Approach to the Renormalization Group

|journal=Physical Review D

|volume=8 |issue=10 |pages=3497–3509

|doi=10.1103/PhysRevD.8.3497

|bibcode = 1973PhRvD...8.3497W }} The MS scheme consists of absorbing only the divergent part of the radiative corrections into the counterterms.

In the similar and more widely used modified minimal subtraction, or MS-bar scheme (\overline{\text{MS}}), one absorbs the divergent part plus a universal constant that always arises along with the divergence in Feynman diagram calculations into the counterterms. When using dimensional regularization, i.e. d^4 p \to \mu^{4-d} d^d p, it is implemented by rescaling the renormalization scale: \mu^2 \to \mu^2 \frac{ e^{\gamma_{\rm E}} }{4 \pi}, with \gamma_{\rm E} the Euler–Mascheroni constant.

References

= Other =

  • {{cite journal

|last1=Bardeen | first1=W.A. | author1-link=William A. Bardeen

|last2=Buras | first2=A.J. | author2-link=Andrzej Buras

|last3=Duke | first3=D.W.

|last4=Muta | first4=T.

|year=1978

|title=Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories

|journal=Physical Review D

|volume=18 | pages=3998–4017 | issue=11

|doi=10.1103/PhysRevD.18.3998

|bibcode = 1978PhRvD..18.3998B |url=https://cds.cern.ch/record/870641/files/c78-08-23-p234.pdf}}

  • {{cite book

|last1=Collins | first1=J.C.

|year=1984

|title=Renormalization

|series=Cambridge Monographs on Mathematical Physics

|publisher=Cambridge University Press

|isbn=978-0-521-24261-5

|mr=778558

}}

Category:Renormalization group

{{quantum-stub}}

{{statisticalmechanics-stub}}