Mironenko reflecting function

{{Short description|Mathematical function}}

{{Multiple issues|

{{context|date=May 2025}}

{{technical|date=May 2025}}

}}In applied mathematics, the reflecting function \,F(t,x) of a differential system \dot x=X(t,x) connects the past state \,x(-t) of the system with the future state \,x(t) of the system by the formula \,x(-t)=F(t,x(t)). The concept of the reflecting function was introduced by Uladzimir Ivanavich Mironenka.

Definition

For the differential system \dot x=X(t,x) with the general solution \varphi(t;t_0,x) in Cauchy form, the Reflecting Function of the system is defined by the formula F(t,x)=\varphi(-t;t,x).

Application

If a vector-function X(t,x) is \,2\omega-periodic with respect to \,t, then \,F(-\omega,x) is the in-period \,[-\omega;\omega] transformation (Poincaré map) of the differential system \dot x=X(t,x). Therefore the knowledge of the Reflecting Function give us the opportunity to find out the initial dates \,(\omega,x_0) of periodic solutions of the differential system \dot x=X(t,x) and investigate the stability of those solutions.

For the Reflecting Function \,F(t,x) of the system \dot x=X(t,x) the basic relation

: \,F_t+F_x X+X(-t,F)=0,\qquad F(0,x)=x.

is holding.

Therefore we have an opportunity sometimes to find Poincaré map of the non-integrable in quadrature systems even in elementary functions.

Literature

  • Мироненко В. И. [http://tov.lenin.ru/vi/Mironenko%20V.I.%20Otrazhayushchaya%20funkciya%20i%20periodicheskie%20resheniya%20differencial%27nyh%20uravnenij.%20(1986).djvu Отражающая функция и периодические решения дифференциальных уравнений]. — Минск, Университетское, 1986. — 76 с.
  • Мироненко В. И. Отражающая функция и исследование многомерных дифференциальных систем. — Гомель: Мин. образов. РБ, ГГУ им. Ф. Скорины, 2004. — 196 с.