Modulus (algebraic number theory)

{{For|the operation that gives a number's remainder|Modulo operation}}

In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle,{{harvnb|Lang|1994|loc=§VI.1}} or extended ideal{{harvnb|Cohn|1985|loc=definition 7.2.1}}) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.

Definition

Let K be a global field with ring of integers R. A modulus is a formal product{{harvnb|Janusz|1996|loc=§IV.1}}{{harvnb|Serre|1988|loc=§III.1}}

:\mathbf{m} = \prod_{\mathbf{p}} \mathbf{p}^{\nu(\mathbf{p})},\,\,\nu(\mathbf{p})\geq0

where p runs over all places of K, finite or infinite, the exponents ν(p) are zero except for finitely many p. If K is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If K is a function field, ν(p) = 0 for all infinite places.

In the function field case, a modulus is the same thing as an effective divisor,{{harvnb|Serre|1988|loc=§III.1}} and in the number field case, a modulus can be considered as special form of Arakelov divisor.{{harvnb|Neukirch|1999|loc=§III.1}}

The notion of congruence can be extended to the setting of moduli. If a and b are elements of K×, the definition of a ≡b (mod pν) depends on what type of prime p is:{{harvnb|Janusz|1996|loc=§IV.1}}{{harvnb|Serre|1988|loc=§III.1}}

  • if it is finite, then

::a\equiv^\ast\!b\,(\mathrm{mod}\,\mathbf{p}^\nu)\Leftrightarrow \mathrm{ord}_\mathbf{p}\left(\frac{a}{b}-1\right)\geq\nu

:where ordp is the normalized valuation associated to p;

  • if it is a real place (of a number field) and ν = 1, then

::a\equiv^\ast\!b\,(\mathrm{mod}\,\mathbf{p})\Leftrightarrow \frac{a}{b}>0

:under the real embedding associated to p.

  • if it is any other infinite place, there is no condition.

Then, given a modulus m, a ≡b (mod m) if a ≡b (mod pν(p)) for all p such that ν(p) > 0.

Ray class group

{{main|Ray class group}}

The ray modulo m is{{harvnb|Milne|2008|loc=§V.1}}{{harvnb|Janusz|1996|loc=§IV.1}}{{harvnb|Serre|1988|loc=§VI.6}}

:K_{\mathbf{m},1}=\left\{ a\in K^\times : a\equiv^\ast\!1\,(\mathrm{mod}\,\mathbf{m})\right\}.

A modulus m can be split into two parts, mf and m, the product over the finite and infinite places, respectively. Let Im to be one of the following:

  • if K is a number field, the subgroup of the group of fractional ideals generated by ideals coprime to mf;{{harvnb|Janusz|1996|loc=§IV.1}}
  • if K is a function field of an algebraic curve over k, the group of divisors, rational over k, with support away from m.{{harvnb|Serre|1988|loc=§V.1}}

In both case, there is a group homomorphism i : Km,1Im obtained by sending a to the principal ideal (resp. divisor) (a).

The ray class group modulo m is the quotient Cm = Im / i(Km,1).{{harvnb|Janusz|1996|loc=§IV.1}}{{harvnb|Serre|1988|loc=§VI.6}} A coset of i(Km,1) is called a ray class modulo m.

Erich Hecke's original definition of Hecke characters may be interpreted in terms of characters of the ray class group with respect to some modulus m.{{harvnb|Neukirch|1999|loc=§VII.6}}

=Properties=

When K is a number field, the following properties hold.{{harvnb|Janusz|1996|loc=§4.1}}

  • When m = 1, the ray class group is just the ideal class group.
  • The ray class group is finite. Its order is the ray class number.
  • The ray class number is divisible by the class number of K.

Notes

{{reflist|2}}

References

  • {{Citation

| last=Cohn

| first=Harvey

| title=Introduction to the construction of class fields

| series=Cambridge studies in advanced mathematics

| volume=6

| publisher=Cambridge University Press

| year=1985

| isbn=978-0-521-24762-7

}}

  • {{Citation

| last=Janusz

| first=Gerald J.

| title=Algebraic number fields

| publisher=American Mathematical Society

| series=Graduate Studies in Mathematics

| volume=7

| year=1996

| isbn=978-0-8218-0429-2

}}

  • {{Citation

| last=Lang

| first=Serge

| author-link=Serge Lang

| title=Algebraic number theory

| edition=2

| publisher=Springer-Verlag

| year=1994

| series=Graduate Texts in Mathematics

| volume=110

| place=New York

| isbn=978-0-387-94225-4

| mr=1282723

}}

  • {{Citation

| last=Milne

| first=James

| title=Class field theory

| url=http://jmilne.org/math/CourseNotes/cft.html

| edition=v4.0

| year=2008

| accessdate=2010-02-22

}}

  • {{Neukirch ANT}}
  • {{Citation

| last=Serre

| first=Jean-Pierre

| author-link=Jean-Pierre Serre

| title=Algebraic groups and class fields

| year=1988

| isbn=978-0-387-96648-9

| publisher=Springer-Verlag

| location=New York

| series=Graduate Texts in Mathematics

| volume=117

| url-access=registration

| url=https://archive.org/details/algebraicgroupsc0000serr

}}

{{DEFAULTSORT:Modulus (Algebraic Number Theory)}}

Category:Algebraic number theory