Monoidal adjunction

{{More citations needed|date=December 2024}}

A monoidal adjunction is an adjunction in mathematics between monoidal categories which respects the monoidal structure.{{cite web | title=monoidal adjunction | url=https://ncatlab.org/nlab/show/monoidal+adjunction |publisher=nlab | access-date=2024-12-23}}{{cite journal | last=Lindner | first=Harald | title=Adjunctions in monoidal categories | journal=Manuscripta Mathematica | volume=26 | issue=1-2 | date=1978 | issn=0025-2611 | doi=10.1007/BF01167969 | pages=123–139}}{{cite book | last=Hasegawa | first=Masahito | title=Models of Sharing Graphs | publisher=Springer Science & Business Media | publication-place=London | date=2012-12-06 | isbn=978-1-4471-0865-8 | page=64}}

Suppose that (\mathcal C,\otimes,I) and (\mathcal D,\bullet,J) are two monoidal categories. A monoidal adjunction between two lax monoidal functors

:(F,m):(\mathcal C,\otimes,I)\to (\mathcal D,\bullet,J) and (G,n):(\mathcal D,\bullet,J)\to(\mathcal C,\otimes,I)

is an adjunction (F,G,\eta,\varepsilon) between the underlying functors, such that the natural transformations

:\eta:1_{\mathcal C}\Rightarrow G\circ F and \varepsilon:F\circ G\Rightarrow 1_{\mathcal D}

are monoidal natural transformations.

Lifting adjunctions to monoidal adjunctions

Suppose that

:(F,m):(\mathcal C,\otimes,I)\to (\mathcal D,\bullet,J)

is a lax monoidal functor such that the underlying functor F:\mathcal C\to\mathcal D has a right adjoint G:\mathcal D\to\mathcal C. This adjunction lifts to a monoidal adjunction (F,m)(G,n) if and only if the lax monoidal functor (F,m) is strong.

See also

  • Every monoidal adjunction (F,m)(G,n) defines a monoidal monad G\circ F.

References