Monomial conjecture

{{one source |date=May 2024}}

In commutative algebra, a field of mathematics, the monomial conjecture of Melvin Hochster says the following:{{Cite web |title=Local Cohomology and the Homological Conjectures in Commutative Algebra |url=https://www5a.biglobe.ne.jp/~tomari/hamana/roberts.pdf |access-date=2023-12-19 |website=www5a.biglobe.ne.jp}}

Let A be a Noetherian local ring of Krull dimension d and let x1, ..., xd be a system of parameters for A (so that A/(x1, ..., xd) is an Artinian ring). Then for all positive integers t, we have

: x_1^t \cdots x_d^t \not\in (x_1^{t+1},\dots,x_d^{t+1}). \,

The statement can relatively easily be shown in characteristic zero.

See also

References

{{Reflist}}

Category:Commutative algebra

Category:Conjectures

{{commutative-algebra-stub}}