Moschovakis coding lemma
The Moschovakis coding lemma is a lemma from descriptive set theory involving sets of real numbers under the axiom of determinacy (the principle — incompatible with choice — that every two-player integer game is determined). The lemma was developed and named after the mathematician Yiannis N. Moschovakis.
The lemma may be expressed generally as follows:
:Let {{mvar|Γ}} be a non-selfdual pointclass closed under real quantification and {{math|∧}}, and {{math|≺}} a {{mvar|Γ}}-well-founded relation on {{math|ωω}} of rank {{math|θ ∈ ON}}. Let {{math|R ⊆ dom(≺) × ωω}} be such that {{math|(∀x∈dom(≺))(∃y)(x R y)}}. Then there is a {{mvar|Γ}}-set {{math|A ⊆ dom(≺) × ωω}} which is a choice set for R, that is:
- {{math|(∀α<θ)(∃x∈dom(≺),y)({{mabs|x}}≺{{=}}α ∧ x A y)}}.
- {{math|(∀x,y)(x A y → x R y)}}.
A proof runs as follows: suppose for contradiction {{mvar|θ}} is a minimal counterexample, and fix {{math|≺}}, {{math|R}}, and a good universal set {{math|U ⊆ (ωω)3}} for the {{mvar|Γ}}-subsets of {{math|(ωω)2}}. Easily, {{mvar|θ}} must be a limit ordinal. For {{math|δ < θ}}, we say {{math|u ∈ ωω}} codes a {{mvar|δ}}-choice set provided the property (1) holds for {{math|α ≤ δ}} using {{math|A {{=}} U u}} and property (2) holds for {{math|A {{=}} U u}} where we replace {{math|x ∈ dom(≺)}} with {{math|x ∈ dom(≺) ∧ {{mabs|x}} ≺ [≤δ]}}. By minimality of {{mvar|θ}}, for all {{math|δ < θ}}, there are {{math|δ}}-choice sets.
Now, play a game where players I, II select points {{math|u,v ∈ ωω}} and II wins when {{mvar|u}} coding a {{math|δ1}}-choice set for some {{math|δ1 < θ}} implies {{mvar|v}} codes a {{math|δ2}}-choice set for some {{math|δ2 > δ1}}. A winning strategy for I defines a {{math|Σ{{su|b=1|p=1}}}} set {{mvar|B}} of reals encoding {{mvar|δ}}-choice sets for arbitrarily large {{math|δ < θ}}. Define then
:{{math|x A y ↔ (∃w∈B)U(w,x,y)}},
which easily works. On the other hand, suppose {{mvar|τ}} is a winning strategy for II. From the s-m-n theorem, let {{math|s:(ωω)2 → ωω}} be continuous such that for all {{mvar|ϵ}}, {{mvar|x}}, {{mvar|t}}, and {{mvar|w}},
:{{math|U(s(ϵ,x),t,w) ↔ (∃y,z)(y ≺ x ∧ U(ϵ,y,z) ∧ U(z,t,w))}}.
By the recursion theorem, there exists {{math|ϵ0}} such that {{math|U(ϵ0,x,z) ↔ z {{=}} τ(s(ϵ0,x))}}. A straightforward induction on {{math|{{mabs|x}}≺}} for {{math|x ∈ dom(≺)}} shows that
:{{math|(∀x∈dom(≺))(∃!z)U(ϵ0,x,z)}},
and
:{{math|(∀x∈dom(≺),z)(U(ϵ0,x,z) → z encodes a choice set of ordinal ≥{{mabs|x}}≺)}}.
So let
:{{math|x A y ↔ (∃z∈dom(≺),w)(U(ϵ0,z,w) ∧ U(w,x,y))}}.{{cite book
| last =Babinkostova
| first =Liljana
| title =Set Theory and Its Applications
| publisher =American Mathematical Society
| date =2011
| language =English
| isbn =978-0821848128
| last1 =Foreman
| first1 =Matthew
| author1-link =Matthew Foreman
| last2 =Kanamori
| first2 =Akihiro
| author2-link =Akihiro Kanamori
| title =Handbook of Set Theory
| publisher =Springer
| date =October 27, 2005
| pages =2230
| url =http://www.math.unt.edu/~sjackson/papers/strad_27.pdf
| isbn =978-1402048432
| last =Moschovakis
| first =Yiannis
| contribution =Ordinal games and playful models
| title = Cabal Seminar 77 – 79: Proceedings, Caltech-UCLA Logic Seminar 1977 – 79
| series =Lecture Notes in Mathematics
|editor1= Alexander S. Kechris |editor2=Donald A. Martin |editor3=Yiannis N. Moschovakis
| volume =839
| pages =169–201
| publisher =Springer
| location =Berlin
| date =October 4, 2006
| isbn =978-3-540-38422-9
| doi = 10.1007/BFb0090241
}}
References
{{Reflist}}
{{Set theory}}
{{math-stub}}