Mott polynomials

In mathematics the Mott polynomials sn(x) are polynomials given by the exponential generating function:

: e^{x(\sqrt{1-t^2}-1)/t}=\sum_n s_n(x) t^n/n!.

They were introduced by Nevill Francis Mott who applied them to a problem in the theory of electrons.{{cite journal | last1=Mott | first1=N. F. | title=The Polarisation of Electrons by Double Scattering | jstor=95868 | year=1932 | journal=Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character | issn=0950-1207 | volume=135 | issue=827 | pages=429–458 [442] | doi=10.1098/rspa.1932.0044| doi-access=free | bibcode=1932RSPSA.135..429M }}

Because the factor in the exponential has the power series

: \frac{\sqrt{1-t^2}-1}{t} = -\sum_{k\ge 0} C_k \left(\frac{t}{2}\right)^{2k+1}

in terms of Catalan numbers C_k, the coefficient in front of x^k of the polynomial can be written as

:[x^k] s_n(x) =(-1)^k\frac{n!}{k!2^n}\sum_{n=l_1+l_2+\cdots +l_k}C_{(l_1-1)/2}C_{(l_2-1)/2}\cdots C_{(l_k-1)/2}, according to the general formula for generalized Appell polynomials, where the sum is over all compositions n=l_1+l_2+\cdots+l_k of n into k positive odd integers. The empty product appearing for k=n=0 equals 1. Special values, where all contributing Catalan numbers equal 1, are

: [x^n]s_n(x) = \frac{(-1)^n}{2^n}.

: [x^{n-2}]s_n(x) = \frac{(-1)^n n(n-1)(n-2)}{2^n}.

By differentiation the recurrence for the first derivative becomes

: s'(x) =- \sum_{k=0}^{\lfloor (n-1)/2\rfloor} \frac{n!}{(n-1-2k)!2^{2k+1}} C_k s_{n-1-2k}(x).

The first few of them are {{OEIS|A137378}}

:s_0(x)=1;

:s_1(x)=-\frac{1}{2}x;

:s_2(x)=\frac{1}{4}x^2;

:s_3(x)=-\frac{3}{4}x-\frac{1}{8}x^3;

:s_4(x)=\frac{3}{2}x^2+\frac{1}{16}x^4;

:s_5(x)=-\frac{15}{2}x-\frac{15}{8}x^3-\frac{1}{32}x^5;

:s_6(x)=\frac{225}{8}x^2+\frac{15}{8}x^4+\frac{1}{64}x^6;

The polynomials sn(x) form the associated Sheffer sequence for –2t/(1–t2){{cite book | last1=Roman | first1=Steven | title=The umbral calculus | url=https://books.google.com/books?id=JpHjkhFLfpgC | publisher=Academic Press Inc. [Harcourt Brace Jovanovich Publishers] | location=London | series=Pure and Applied Mathematics | isbn=978-0-12-594380-2 | mr=741185 | year=1984 | volume=111 |page=130}} Reprinted by Dover, 2005.

An explicit expression for them in terms of the generalized hypergeometric function 3F0:{{cite book | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz |author3-link=:de:Fritz Oberhettinger |last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc. |place= New York-Toronto-London | mr=0066496 | year=1955 |page=251 |url=https://authors.library.caltech.edu/43491/}}

:s_n(x)=(-x/2)^n{}_3F_0(-n,\frac{1-n}{2},1-\frac{n}{2};;-\frac{4}{x^2})

References

{{reflist}}

Category:Polynomials

{{polynomial-stub}}