Ms2 (software)

{{Short description|Molecular simulation program}}

{{Multiple issues|{{notability|Products|date=September 2021}}

{{primary sources|date=September 2021}}}}

{{Lowercase title}}

{{Infobox software

| name = ms2

| logo = ms2 logo white background framed

| screenshot =

| caption =

| author = Colin W. Glass, Steffen Reiser, Gábor Rutkai, Stephan Deublein, Andreas Köster, Gabriela Guevara-Carrion, Amer Wafai, Martin Horsch, Martin Bernreuther, Thorsten Windmann, Kai Langenbach, David Celny, Sergei Prokopev, Isabel Nitzke, Thorsten Merker, Stephan Deublein, Bernhard Eckl, Jürgen Stoll, Sergey V. Lishchuk, Denis Saric, Joshua Marx, Tatjana Janzen, Michael Schappals, Robin Fingerhut, Maximilian Kohns, Simon Stephan, Hans Hasse, Jadran Vrabec

| developer = TU Kaiserslautern, TU Berlin, HLRS Stuttgart

| released = {{Start date and age|2011}}

| latest release version = 01 May 2021

| latest release date = {{Start date and age|2021|05|29}}

| programming language = Fortran

| operating system = Linux, macOS, Windows

| platform = x86, x86-64

| size = 250 MB

| language = English

| genre = Molecular dynamics, Monte Carlo

| license = Creative commons CC by NC 3.0

| website = {{URL|https://www.ms-2.de/home.html}}

| repo = {{URL|https://www.ms-2.de/home.html}}

}}

ms2 is a non-commercial molecular simulation program.{{Cite journal|last1=Glass|first1=Colin W.|last2=Reiser|first2=Steffen|last3=Rutkai|first3=Gábor|last4=Deublein|first4=Stephan|last5=Köster|first5=Andreas|last6=Guevara-Carrion|first6=Gabriela|last7=Wafai|first7=Amer|last8=Horsch|first8=Martin|last9=Bernreuther|first9=Martin|last10=Windmann|first10=Thorsten|last11=Hasse|first11=Hans|date=December 2014|title=ms2: A molecular simulation tool for thermodynamic properties, new version release|url=http://dx.doi.org/10.1016/j.cpc.2014.07.012|journal=Computer Physics Communications|volume=185|issue=12|pages=3302–3306|doi=10.1016/j.cpc.2014.07.012|issn=0010-4655|arxiv=1507.07548|bibcode=2014CoPhC.185.3302G |s2cid=7271270 }}{{Cite journal |last1=Deublein|first1=Stephan|last2=Eckl|first2=Bernhard|last3=Stoll|first3=Jürgen|last4=Lishchuk|first4=Sergey V.|last5=Guevara-Carrion|first5=Gabriela|last6=Glass|first6=Colin W.|last7=Merker|first7=Thorsten|last8=Bernreuther|first8=Martin|last9=Hasse|first9=Hans|last10=Vrabec|first10=Jadran|date=November 2011|title=ms2: A molecular simulation tool for thermodynamic properties|url=http://dx.doi.org/10.1016/j.cpc.2011.04.026|journal=Computer Physics Communications|volume=182|issue=11|pages=2350–2367|doi=10.1016/j.cpc.2011.04.026|bibcode=2011CoPhC.182.2350D |issn=0010-4655|url-access=subscription}}{{Cite journal|last1=Fingerhut|first1=Robin|last2=Guevara-Carrion|first2=Gabriela|last3=Nitzke|first3=Isabel|last4=Saric|first4=Denis|last5=Marx|first5=Joshua|last6=Langenbach|first6=Kai|last7=Prokopev|first7=Sergei|last8=Celný|first8=David|last9=Bernreuther|first9=Martin|last10=Stephan|first10=Simon|last11=Kohns|first11=Maximilian|date=May 2021|title=ms2: A molecular simulation tool for thermodynamic properties, release 4.0|url=http://dx.doi.org/10.1016/j.cpc.2021.107860|journal=Computer Physics Communications |volume=262|pages=107860|doi=10.1016/j.cpc.2021.107860|bibcode=2021CoPhC.26207860F |s2cid=264228170 |issn=0010-4655|url-access=subscription}}{{Cite journal|last1=Rutkai|first1=Gábor|last2=Köster|first2=Andreas|last3=Guevara-Carrion|first3=Gabriela|last4=Janzen|first4=Tatjana|last5=Schappals|first5=Michael|last6=Glass|first6=Colin W.|last7=Bernreuther|first7=Martin|last8=Wafai|first8=Amer|last9=Stephan|first9=Simon|last10=Kohns|first10=Maximilian|last11=Reiser|first11=Steffen|date=December 2017|title=ms2: A molecular simulation tool for thermodynamic properties, release 3.0|url=http://dx.doi.org/10.1016/j.cpc.2017.07.025|journal=Computer Physics Communications |volume=221|pages=343–351|doi=10.1016/j.cpc.2017.07.025|bibcode=2017CoPhC.221..343R |issn=0010-4655|url-access=subscription}}{{Cite journal |last=Nitzke |first=Isabel |last2=Guevara-Carrion |first2=Gabriela |last3=Saric |first3=Denis |last4=Homes |first4=Simon |last5=Stephan |first5=Simon |last6=Fingerhut |first6=Robin |last7=Bernreuther |first7=Martin |last8=Hasse |first8=Hans |last9=Vrabec |first9=Jadran |date=2025-05-01 |title=ms2: A molecular simulation tool for thermodynamic properties, release 5.0 |url=https://linkinghub.elsevier.com/retrieve/pii/S001046552500044X |journal=Computer Physics Communications |volume=310 |pages=109541 |doi=10.1016/j.cpc.2025.109541 |issn=0010-4655|doi-access=free }} It comprises both molecular dynamics and Monte Carlo simulation algorithms. ms2 is designed for the calculation of thermodynamic properties of fluids. A large number of thermodynamic properties can be readily computed using ms2, e.g. phase equilibrium, transport and caloric properties. ms2 is limited to homogeneous state simulations.

Features

ms2 contains two molecular simulation techniques: molecular dynamics (MD) and Monte-Carlo. ms2 supports the calculation of vapor-liquid equilibria of pure components as well as multi-component mixtures. Different Phase equilibrium calculation methods are implemented in ms2. Furthermore, ms2 is capable of sampling various classical ensembles such as NpT, NVE, NVT, NpH. To evaluate the chemical potential, Widom's test molecule method and thermodynamic integration are implemented. Also, algorithms for the sampling of transport properties are implemented in ms2. Transport properties are determined by equilibrium MD simulations following the Green-Kubo formalism and the Einstein formalism.

Applications

ms2 has been frequently used for predicting thermophysical properties of fluids for chemical engineering applications{{Cite journal|last1=Linnemann|first1=Matthias|last2=Nikolaychuk|first2=Pavel Anatolyevich|last3=Muñoz-Muñoz|first3=Y. Mauricio|last4=Baumhögger|first4=Elmar|last5=Vrabec|first5=Jadran|date=2020-03-12|title=Henry's Law Constant of Noble Gases in Water, Methanol, Ethanol, and Isopropanol by Experiment and Molecular Simulation|url=https://doi.org/10.1021/acs.jced.9b00565|journal=Journal of Chemical & Engineering Data|volume=65|issue=3|pages=1180–1188|doi=10.1021/acs.jced.9b00565|s2cid=208749534 |issn=0021-9568|url-access=subscription}}{{Cite journal|last1=Guevara-Carrion|first1=Gabriela|last2=Nieto-Draghi|first2=Carlos|last3=Vrabec|first3=Jadran|last4=Hasse|first4=Hans|date=2008-12-25|title=Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture|url=https://doi.org/10.1021/jp805584d|journal=The Journal of Physical Chemistry B|volume=112|issue=51|pages=16664–16674|doi=10.1021/jp805584d|pmid=19367909 |issn=1520-6106|arxiv=0906.1717|s2cid=17757946 }}{{Cite journal|last1=Deublein|first1=Stephan|last2=Eckl|first2=Bernhard|last3=Stoll|first3=Jürgen|last4=Lishchuk|first4=Sergey V.|last5=Guevara-Carrion|first5=Gabriela|last6=Glass|first6=Colin W.|last7=Merker|first7=Thorsten|last8=Bernreuther|first8=Martin|last9=Hasse|first9=Hans|last10=Vrabec|first10=Jadran|date=2011-12-20|title=ms2: Ein Werkzeug zur Berechnung thermodynamischer Stoffeigenschaften mittels molekularer Simulation|url=http://dx.doi.org/10.1002/cite.201100079|journal=Chemie Ingenieur Technik|volume=84|issue=1–2|pages=114–120|doi=10.1002/cite.201100079|issn=0009-286X|url-access=subscription}}{{Cite journal|last1=Vrabec|first1=Jadran|last2=Bernreuther|first2=Martin|last3=Bungartz|first3=Hans-Joachim|last4=Chen|first4=Wei-Lin|last5=Cordes|first5=Wilfried|last6=Fingerhut|first6=Robin|last7=Glass|first7=Colin W.|last8=Gmehling|first8=Jürgen|last9=Hamburger|first9=René|last10=Heilig|first10=Manfred|last11=Heinen|first11=Matthias|date=2018|title=SkaSim – Skalierbare HPC-Software für molekulare Simulationen in der chemischen Industrie|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201700113|journal=Chemie Ingenieur Technik|language=de|volume=90|issue=3|pages=295–306|doi=10.1002/cite.201700113|issn=1522-2640|url-access=subscription}} as well as for scientific computing and soft matter physics.{{Cite journal|last1=Stephan|first1=Simon|last2=Thol|first2=Monika|last3=Vrabec|first3=Jadran|last4=Hasse|first4=Hans|date=2019-10-28|title=Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment|url=https://pubs.acs.org/doi/10.1021/acs.jcim.9b00620|journal=Journal of Chemical Information and Modeling|language=en|volume=59|issue=10|pages=4248–4265|doi=10.1021/acs.jcim.9b00620|pmid=31609113 |s2cid=204545481 |issn=1549-9596}}{{Cite journal|last1=Stephan|first1=Simon|last2=Hasse|first2=Hans|date=2020-01-23|title=Molecular interactions at vapor-liquid interfaces: Binary mixtures of simple fluids|url=https://link.aps.org/doi/10.1103/PhysRevE.101.012802|journal=Physical Review E|volume=101|issue=1|pages=012802|doi=10.1103/PhysRevE.101.012802|pmid=32069593 |bibcode=2020PhRvE.101a2802S |s2cid=211192904 |url-access=subscription}} It has been used for modelling both model fluids as well as real substances. A large number interaction potentials are implemented in ms2, e.g. the Lennard-Jones potential, the Mie potential, electrostatic interactions (point charges, point dipoles and point quadrupoles), and external forces. Force fields from databases such as the [https://molmod.boltzmann-zuse.de MolMod database]{{Cite journal|last1=Stephan|first1=Simon|last2=Horsch|first2=Martin T.|last3=Vrabec|first3=Jadran|last4=Hasse|first4=Hans|date=2019-07-03|title=MolMod – an open access database of force fields for molecular simulations of fluids|url=https://doi.org/10.1080/08927022.2019.1601191|journal=Molecular Simulation|volume=45|issue=10|pages=806–814|doi=10.1080/08927022.2019.1601191| arxiv=1904.05206|s2cid=119199372 |issn=0892-7022}} can readily be used in ms2.

See also

References