Mxparser

{{Infobox software

| name = MathParser.org-mXparser

| logo =

| author = Mariusz Gromada

| released = {{Start date and age|df=yes|2010|01}}

| discontinued =

| latest release version = 6.1.0

| latest release date = {{Start date and age|2024|10|19|df=yes}}

| programming language = Java, C#, C++

| platform = JVM, Android, C++, .NET, .NET Core, .NET Standard, Windows Phone, MONO, Xamarin, Xamarin.iOS, Xamarin.Android

| alexa =

| website = {{URL|https://mathparser.org/}}

| repo = {{URL|https://github.com/mariuszgromada/MathParser.org-mXparser/}}

}}

mXparser is an open-source mathematical expressions parser/evaluator providing abilities to calculate various expressions at a run time.[http://mathparser.org/ .org - project page] Expressions definitions are given as plain text, then verified in terms of grammar / syntax, finally calculated. Library source code is maintained separately for Java and C#, providing the same API for Java/JVM, Android, .NET and Mono (Common Language Specification Compliant).

Main features / usage examples

mXparser delivers functionalities such as: basic calculations, implied multiplication, built-in constants and functions, numerical calculus operations, iterated operators, user defined constants, user defined functions, user defined recursion, Unicode mathematical symbols support.

=Basic [[Operator (mathematics)|operators]]<ref name="col">[http://mathparser.org/mxparser-math-collection/ mXparser - Math Collection]</ref>=

mXparser supports basic operators, such as: addition '+', subtraction '-', multiplication '*', division '/', factorial '!', power '^', modulo '#'.

Expression e = new Expression("2+3/(4+5)^4");

double v = e.calculate();

=Implied multiplication<ref name="col" />=

Expression e = new Expression("2(3+4)3");

double v = e.calculate();

Expression e = new Expression("2pi(3+4)2sin(3)e");

double v = e.calculate();

=[[Binary relation]]s<ref name="col" />=

It is possible to combine typical expressions with binary relations (such as: greater than '>', less than '<', equality '=', inequality '<>', greater or equal '>=', lower or equal '<='), as each relation evaluation results in either '1' for true outcome, or '0' for false.

Expression e = new Expression("(2<3)+5");

double v = e.calculate();

=[[Logical connective|Boolean logic]]<ref name="col" />=

Boolean logic also operates assuming equivalence of '1 as true' and '0 as false'. Supported Boolean operators include: AND conjunction, OR disjunction, NAND Sheffer stroke, NOR, XOR Exclusive OR, IMP Implication, CIMP Converse implication, NIMP Material nonimplication, CNIMP Converse nonimplication, EQV Logical biconditional, Negation.

Expression e = new Expression("1 --> 0");

double v = e.calculate();

=Built-in mathematical functions<ref name="col" />=

Supported common mathematical functions (unary, binary and variable number of arguments), including: trigonometric functions, inverse trigonometric functions, logarithm functions, exponential function, hyperbolic functions, Inverse hyperbolic functions, Bell numbers, Lucas numbers, Stirling numbers, prime-counting function, exponential integral function, logarithmic integral function, offset logarithmic integral, binomial coefficient and others.

Expression e = new Expression("sin(0)+ln(2)+log(3,9)");

double v = e.calculate();

Expression e = new Expression("min(1,2,3,4)+gcd(1000,100,10)");

double v = e.calculate();

Expression e = new Expression("if(2<1, 3, 4)");

double v = e.calculate();

Expression e = new Expression("iff(2<1, 1; 3<4, 2; 10<2, 3; 5<10, 4)");

double v = e.calculate();

=Built-in math constants<ref name="col" />=

Built-in mathematical constants, with high precision.

Expression e = new Expression("sin(pi)+ln(e)");

double v = e.calculate();

=Iterated operators<ref name="col" />=

Iterated summation and product operators.

Expression e = new Expression("sum(i, 1, 10, ln(i))");

double v = e.calculate();

Expression e = new Expression("prod(i, 1, 10, sin(i))");

double v = e.calculate();

=Numerical [[Derivative|differentiation]] and [[Integral|integration]]<ref name="col" />=

mXparser delivers implementation of the following calculus operations: differentiation and integration.

Expression e = new Expression("der( sin(x), x )");

double v = e.calculate();

Expression e = new Expression("int( sqrt(1-x^2), x, -1, 1)");

double v = e.calculate();

=[[Prime number]]s support<ref name="col" />=

Expression e = new Expression("ispr(21)");

double v = e.calculate();

Expression e = new Expression("Pi(1000)");

double v = e.calculate();

=[[Mathematical operators and symbols in Unicode|Unicode mathematical symbols support]]<ref name="col" />=

Expression e = new Expression("√2");

double v = e.calculate();

Expression e = new Expression("∜16 + ∛27 + √16");

double v = e.calculate();

Expression e = new Expression("∑(i, 1, 5, i^2)");

double v = e.calculate();

Elements defined by user

Library provides API for creation of user-defined objects, such as: constants, arguments, functions.

=User-defined constants<ref name="tutorial">[http://mathparser.org/mxparser-tutorial/ mXparser - Tutorial]</ref>=

Constant t = new Constant("t = 2*pi");

Expression e = new Expression("sin(t)", t);

double v = e.calculate();

=User-defined arguments<ref name="tutorial" />=

Argument x = new Argument("x = 5");

Argument y = new Argument("y = 2*x", x);

Expression e = new Expression("sin(x)+y", x, y);

double v = e.calculate();

=User-defined functions<ref name="tutorial" />=

Function f = new Function("f(x, y) = sin(x)+cos(y)");

Expression e = new Expression("f(1,2)", f);

double v = e.calculate();

=User-defined variadic functions<ref name="tutorial" />=

Function f = new Function("f(...) = sum( i, 1, [npar], par(i) )");

Expression e = new Expression("f(1,2,3,4)", f);

double v = e.calculate();

=User-defined [[recursion]]<ref name="tutorial" />=

Function fib = new Function("fib(n) = iff( n>1, fib(n-1)+fib(n-2); n=1, 1; n=0, 0 ) )");

Expression e = new Expression("fib(10)", fib);

double v = e.calculate();

Requirements<ref name="tutorial" />

Documentation

  • Tutorial
  • Javadoc API specification[http://mathparser.org/api/ mXparser - API specification]

mXparser - source code

Source code is maintained and shared on GitHub.[https://github.com/mariuszgromada/MathParser.org-mXparser mXparser - source code on GitHub]

See also

References

{{reflist}}