N1-Methylpseudouridine

{{Chembox

| ImageFile = N1-methyl-pseudouridine.svg

| ImageSize =

| ImageAlt =

| IUPACName = 5-[(2S,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1-methylpyrimidine-2,4-dione

| OtherNames = 1-Methylpseudouridine; m1Ψ

| Section1 =

{{Chembox Identifiers

| 3DMet =

| Abbreviations =

| Beilstein =

| CASNo = 13860-38-3

| CASNo_Ref = {{Cascite|correct|CAS}}

| ChEBI = 19068

| ChemSpiderID = 89930

| EINECS =

| Gmelin =

| InChI = InChI=1S/C10H14N2O6/c1-12-2-4(9(16)11-10(12)17)8-7(15)6(14)5(3-13)18-8/h2,5-8,13-15H,3H2,1H3,(H,11,16,17)/t5-,6-,7-,8+/m1/s1

| InChIKey = UVBYMVOUBXYSFV-XUTVFYLZSA-N

| KEGG =

| MeSHName =

| PubChem = 99543

| RTECS =

| SMILES = O[C@H]1[C@@](O[C@H](CO)[C@H]1O)(C=2C(=O)NC(=O)N(C)C2)[H]

| UNNumber =

| UNII = 09RAD4M6WF

}}

| Section2 = {{Chembox Properties

| Formula = {{chem2|C10H14N2O6}}

| MolarMass = 258.23 g/mol

| Appearance =

| Density =

| MeltingPt =

| BoilingPt =

| Solubility =

}}

| Section3 = {{Chembox Hazards

| MainHazards =

| FlashPt =

| AutoignitionPt =

}}

}}

N1-Methylpseudouridine (abbreviated m1Ψ) is a natural archaeal tRNA component,{{cite journal | vauthors = Wurm JP, Griese M, Bahr U, Held M, Heckel A, Karas M, Soppa J, Wöhnert J | display-authors = 6 | title = Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs | journal = RNA | volume = 18 | issue = 3 | pages = 412–420 | date = March 2012 | pmid = 22274954 | pmc = 3285930 | doi = 10.1261/rna.028498.111 | quote = In contrast, in most archaea this position is occupied by another hypermodified nucleotide: the isosteric N1-methylated pseudouridine }} and "hypermodified" pyrimidine nucleoside used in biochemistry and molecular biology for in vitro transcription and is found in the SARS-CoV-2 mRNA vaccines tozinameran (PfizerBioNTech) and elasomeran (Moderna).{{cite journal | vauthors = Morais P, Adachi H, Yu YT | title = The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines | journal = Frontiers in Cell and Developmental Biology | volume = 9 | pages = 789427 | date = 2021-11-04 | pmid = 34805188 | pmc = 8600071 | doi = 10.3389/fcell.2021.789427 | doi-access = free }}

Properties

N1-Methylpseudouridine is the methylated derivative of pseudouridine. It is used in in vitro transcription and for the production of RNA vaccines.{{cite journal | vauthors = Knudson CJ, Alves-Peixoto P, Muramatsu H, Stotesbury C, Tang L, Lin PJ, Tam YK, Weissman D, Pardi N, Sigal LJ | display-authors = 6 | title = Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection | journal = Molecular Therapy | volume = 29 | issue = 9 | pages = 2769–2781 | date = September 2021 | pmid = 33992803 | pmc = 8417516 | doi = 10.1016/j.ymthe.2021.05.011 }}{{cite journal | vauthors = Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, Akilli-Öztürk Ö, Kranz LM, Berger H, Petschenka J, Diken M, Kreiter S, Yogev N, Waisman A, Karikó K, Türeci Ö, Sahin U | display-authors = 6 | title = A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis | journal = Science | volume = 371 | issue = 6525 | pages = 145–153 | date = January 2021 | pmid = 33414215 | doi = 10.1126/science.aay3638 | s2cid = 231138578 | bibcode = 2021Sci...371..145K }} In vertebrates, it stimulates significantly less activation of the innate immune response compared to uridine,{{cite journal | vauthors = Nelson J, Sorensen EW, Mintri S, Rabideau AE, Zheng W, Besin G, Khatwani N, Su SV, Miracco EJ, Issa WJ, Hoge S, Stanton MG, Joyal JL | display-authors = 6 | title = Impact of mRNA chemistry and manufacturing process on innate immune activation | journal = Science Advances | volume = 6 | issue = 26 | pages = eaaz6893 | date = June 2020 | pmid = 32637598 | pmc = 7314518 | doi = 10.1126/sciadv.aaz6893 | bibcode = 2020SciA....6.6893N }} while the translation is stronger.{{cite journal | vauthors = Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T | title = N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice | journal = Journal of Controlled Release | volume = 217 | pages = 337–344 | date = November 2015 | pmid = 26342664 | doi = 10.1016/j.jconrel.2015.08.051 | hdl-access = free | hdl = 1854/LU-6993270 | url = https://biblio.ugent.be/publication/6993270 }}{{cite journal | vauthors = Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N | title = N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density | journal = Nucleic Acids Research | volume = 45 | issue = 10 | pages = 6023–6036 | date = June 2017 | pmid = 28334758 | pmc = 5449617 | doi = 10.1093/nar/gkx135 }} In protein biosynthesis, it is read like uridine and enables comparatively high protein yields.{{cite journal | vauthors = Parr CJ, Wada S, Kotake K, Kameda S, Matsuura S, Sakashita S, Park S, Sugiyama H, Kuang Y, Saito H | display-authors = 6 | title = N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells | journal = Nucleic Acids Research | volume = 48 | issue = 6 | pages = e35 | date = April 2020 | pmid = 32090264 | pmc = 7102939 | doi = 10.1093/nar/gkaa070 }} The nucleoside itself can be made by chemical methylation of pseudouridine.{{cite journal | vauthors = Earl RA, Townsend LB | title= A chemical synthesis of the nucleoside 1-methylpseudouridine | journal= Journal of Heterocyclic Chemistry| date= June 1977 | volume = 14 | issue = 4 | pages = 699–700 | doi = 10.1002/jhet.5570140437 }}

While pseudouridine can wobble-pair with bases other than A,{{cite journal | vauthors = Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R | title = The contribution of pseudouridine to stabilities and structure of RNAs | journal = Nucleic Acids Research | volume = 42 | issue = 5 | pages = 3492–3501 | date = March 2014 | pmid = 24369424 | pmc = 3950712 | doi = 10.1093/nar/gkt1330 }} work examining COVID-19 modRNA vaccines that replace all their uridines with N1-methylpseudouridine show faithful protein production.{{Cite journal |last1=Kim |first1=Kyusik Q. |last2=Burgute |first2=Bhagyashri D. |last3=Tzeng |first3=Shin-Cheng |last4=Jing |first4=Crystal |last5=Jungers |first5=Courtney |last6=Zhang |first6=Junya |last7=Yan |first7=Liewei L. |last8=Vierstra |first8=Richard D. |last9=Djuranovic |first9=Sergej |last10=Evans |first10=Bradley S. |last11=Zaher |first11=Hani S. |date=2022-08-30 |title=N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products |journal=Cell Reports |volume=40 |issue=9 |pages=111300 |doi=10.1016/j.celrep.2022.111300 |issn=2211-1247 |pmc=9376333 |pmid=35988540}}

More recent work from Mulroney and colleagues has identified that N1-methylpseudouridine can give rise to slippery sequences that promote ribosomal frameshifting.{{Cite journal |last1=Mulroney |first1=Thomas E. |last2=Pöyry |first2=Tuija |last3=Yam-Puc |first3=Juan Carlos |last4=Rust |first4=Maria |last5=Harvey |first5=Robert F. |last6=Kalmar |first6=Lajos |last7=Horner |first7=Emily |last8=Booth |first8=Lucy |last9=Ferreira |first9=Alexander P. |last10=Stoneley |first10=Mark |last11=Sawarkar |first11=Ritwick |last12=Mentzer |first12=Alexander J. |last13=Lilley |first13=Kathryn S. |last14=Smales |first14=C. Mark |last15=von der Haar |first15=Tobias |date=2023-12-06 |title=N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting |journal=Nature |volume=625 |issue=7993 |language=en |pages=189–194 |doi=10.1038/s41586-023-06800-3 |pmid=38057663 |issn=1476-4687|doi-access=free |pmc=10764286 }} This issue is readily correctable through the replacement of slippery sequences with synonymous codons. The frameshifting is not known to contribute to any safety issues with regard to current mRNA vaccines, nor has it been shown to limit their effectiveness. In work from Mulroney and colleagues, mice immunized with the Bnt162b2 vaccine (Pfizer–BioNTech) demonstrate a greater T cell response against in-frame spike protein than those receiving Vaxzevria (Oxford–AstraZeneca), despite the latter not demonstrating meaningful production of frameshifted sequences. In human donors, the degree of recognition of frameshifted peptides by T cells varies greatly, suggesting that the extent to which frameshifting occurs may vary greatly as well. Importantly, frameshifted products are rare but well-defined events in protein production, including in viral infections, and can give rise to sequences that can be targeted by the immune system.{{Cite journal |last1=Hogan |first1=Michael J. |last2=Maheshwari |first2=Nikita |last3=Begg |first3=Bridget E. |last4=Nicastri |first4=Annalisa |last5=Hedgepeth |first5=Emma J. |last6=Muramatsu |first6=Hiromi |last7=Pardi |first7=Norbert |last8=Miller |first8=Michael A. |last9=Reilly |first9=Shanelle P. |last10=Brossay |first10=Laurent |last11=Lynch |first11=Kristen W. |last12=Ternette |first12=Nicola |last13=Eisenlohr |first13=Laurence C. |date=November 2023 |title=Cryptic MHC-E epitope from influenza elicits a potent cytolytic T cell response |url=https://www.nature.com/articles/s41590-023-01644-5 |journal=Nature Immunology |language=en |volume=24 |issue=11 |pages=1933–1946 |doi=10.1038/s41590-023-01644-5 |pmid=37828378 |s2cid=260829874 |issn=1529-2916}}{{Cite journal |last1=Dolan |first1=Brian P. |last2=Li |first2=Lily |last3=Takeda |first3=Kazuyo |last4=Bennink |first4=Jack R. |last5=Yewdell |first5=Jonathan W. |date=2010-02-01 |title=Defective Ribosomal Products Are the Major Source of Antigenic Peptides Endogenously Generated from Influenza A Virus Neuraminidase |journal=Journal of Immunology |volume=184 |issue=3 |pages=1419–1424 |doi=10.4049/jimmunol.0901907 |issn=0022-1767 |pmc=2940057 |pmid=20038640}} Furthermore, despite significant disparity at the level of nucleotide sequences between COVID-19 vaccines from Pfizer/BioNTech and Moderna,{{Cite journal |last1=Zhang |first1=Lizhou |last2=More |first2=Kunal R. |last3=Ojha |first3=Amrita |last4=Jackson |first4=Cody B. |last5=Quinlan |first5=Brian D. |last6=Li |first6=Hao |last7=He |first7=Wenhui |last8=Farzan |first8=Michael |last9=Pardi |first9=Norbert |last10=Choe |first10=Hyeryun |date=2023-10-11 |title=Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability |journal=npj Vaccines |language=en |volume=8 |issue=1 |page=156 |doi=10.1038/s41541-023-00751-6 |pmid=37821446 |pmc=10567765 |issn=2059-0105}} the safety profile of both vaccines is comparable,{{Cite journal |last1=Dickerman |first1=Barbra A. |last2=Madenci |first2=Arin L. |last3=Gerlovin |first3=Hanna |last4=Kurgansky |first4=Katherine E. |last5=Wise |first5=Jessica K. |last6=Figueroa Muñiz |first6=Michael J. |last7=Ferolito |first7=Brian R. |last8=Gagnon |first8=David R. |last9=Gaziano |first9=J. Michael |last10=Cho |first10=Kelly |last11=Casas |first11=Juan P. |last12=Hernán |first12=Miguel A. |date=2022-07-01 |title=Comparative Safety of BNT162b2 and mRNA-1273 Vaccines in a Nationwide Cohort of US Veterans |url=https://doi.org/10.1001/jamainternmed.2022.2109 |journal=JAMA Internal Medicine |volume=182 |issue=7 |pages=739–746 |doi=10.1001/jamainternmed.2022.2109 |pmid=35696161 |pmc=9194743 |issn=2168-6106}} arguing against any meaningful effect of frameshifting on the safety profile of the vaccines.

History

In 2016, a protocol for large-scale synthesis of the nucleoside triphosphate from the ribonucleoside was published.{{cite journal |vauthors=Shanmugasundaram M, Senthilvelan A, Kore AR |date=December 2016 |title=Gram-Scale Chemical Synthesis of Base-Modified Ribonucleoside-5'-O-Triphosphates |journal=Current Protocols in Nucleic Acid Chemistry |volume=67 |pages=13.15.1–13.15.10 |doi=10.1002/cpnc.20 |pmid=27911496 |s2cid=5143935}}

In 2017–2018 it was tested in vaccines against Zika,{{cite journal |display-authors=6 |vauthors=Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, Dowd KA, Sutherland LL, Scearce RM, Parks R, Wagner W, Granados A, Greenhouse J, Walker M, Willis E, Yu JS, McGee CE, Sempowski GD, Mui BL, Tam YK, Huang YJ, Vanlandingham D, Holmes VM, Balachandran H, Sahu S, Lifton M, Higgs S, Hensley SE, Madden TD, Hope MJ, Karikó K, Santra S, Graham BS, Lewis MG, Pierson TC, Haynes BF, Weissman D |date=March 2017 |title=Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination |journal=Nature |volume=543 |issue=7644 |pages=248–251 |bibcode=2017Natur.543..248P |doi=10.1038/nature21428 |pmc=5344708 |pmid=28151488 |quote=we designed a potent anti-ZIKV vaccine … containing the modified nucleoside 1-methylpseudouridine (m1Ψ)}}{{cite journal |display-authors=6 |vauthors=Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, Ciaramella G, Diamond MS |date=March 2017 |title=Modified mRNA Vaccines Protect against Zika Virus Infection |journal=Cell |volume=168 |issue=6 |pages=1114–1125.e10 |doi=10.1016/j.cell.2017.02.017 |pmc=5388441 |pmid=28222903 |quote=The mRNA was synthesized … where the UTP was substituted with 1-methylpseudoUTP}}{{cite journal |display-authors=6 |vauthors=Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, Moody MA, Verkerke HP, Myles A, Willis E, LaBranche CC, Montefiori DC, Lobby JL, Saunders KO, Liao HX, Korber BT, Sutherland LL, Scearce RM, Hraber PT, Tombácz I, Muramatsu H, Ni H, Balikov DA, Li C, Mui BL, Tam YK, Krammer F, Karikó K, Polacino P, Eisenlohr LC, Madden TD, Hope MJ, Lewis MG, Lee KK, Hu SL, Hensley SE, Cancro MP, Haynes BF, Weissman D |date=June 2018 |title=Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses |journal=The Journal of Experimental Medicine |volume=215 |issue=6 |pages=1571–1588 |doi=10.1084/jem.20171450 |pmc=5987916 |pmid=29739835 |quote=In this study, we characterize the immunogenicity of three vaccines consisting of m1Ψ-modified, FPLC-purified mRNA-LNPs encoding HIV-1 envelope (Env), ZIKV prM-E, and influenza virus hemagglutinin (HA)}} HIV-1, influenza, and Ebola.{{cite journal |vauthors=Meyer M, Huang E, Yuzhakov O, Ramanathan P, Ciaramella G, Bukreyev A |date=January 2018 |title=Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs From Ebola Virus Disease |journal=The Journal of Infectious Diseases |volume=217 |issue=3 |pages=451–455 |doi=10.1093/infdis/jix592 |pmc=5853918 |pmid=29281112 |quote=Two mRNA vaccines were synthesized … where the UTP were substituted with 1-methylpseudo UTP}}{{Rp|5|quote=further success was obtained with N1-methyl-Ψ-modified mRNA vaccines against HIV-1, Zika, and influenza virus … Ebola virus}}

References

{{Reflist}}

{{DEFAULTSORT:Methylpseudouridine, N1-}}

Category:Nucleosides

Category:Pyrimidines

Category:Methyl compounds