NUF2

{{Short description|Protein-coding gene in the species Homo sapiens}}

{{cs1 config|name-list-style=vanc}}

{{Infobox_gene}}

Kinetochore protein Nuf2 is a protein that in humans is encoded by the NUF2 gene.{{cite journal | vauthors = Wigge PA, Kilmartin JV | title = The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation | journal = J Cell Biol | volume = 152 | issue = 2 | pages = 349–60 |date=Mar 2001 | pmid = 11266451 | pmc = 2199619 | doi =10.1083/jcb.152.2.349 }}{{cite journal | vauthors = Nabetani A, Koujin T, Tsutsumi C, Haraguchi T, Hiraoka Y | title = A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint | journal = Chromosoma | volume = 110 | issue = 5 | pages = 322–34 |date=Oct 2001 | pmid = 11685532 | doi = 10.1007/s004120100153 | s2cid = 22443613 }}{{cite web | title = Entrez Gene: NUF2 NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=83540}}

This gene encodes a protein that is highly similar to yeast Nuf2, a component of a conserved protein complex associated with the centromere. Yeast Nuf2 disappears from the centromere during meiotic prophase when centromeres lose their connection to the spindle pole body, and plays a regulatory role in chromosome segregation.

The encoded protein is found to be associated with centromeres of mitotic HeLa cells, which suggests that this protein is a functional homolog of yeast Nuf2. Alternatively spliced transcript variants that encode the same protein have been described.

References

{{reflist}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=DeLuca JG, Moree B, Hickey JM, etal |title=hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. |journal=J. Cell Biol. |volume=159 |issue= 4 |pages= 549–55 |year= 2003 |pmid= 12438418 |doi= 10.1083/jcb.200208159 | pmc=2173110 }}
  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal |vauthors=Tien AC, Lin MH, Su LJ, etal |title=Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. |journal=Mol. Cell. Proteomics |volume=3 |issue= 1 |pages= 93–104 |year= 2004 |pmid= 14602875 |doi= 10.1074/mcp.M300072-MCP200 |doi-access= free }}
  • {{cite journal |vauthors=DeLuca JG, Howell BJ, Canman JC, etal |title=Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. |journal=Curr. Biol. |volume=13 |issue= 23 |pages= 2103–9 |year= 2004 |pmid= 14654001 |doi=10.1016/j.cub.2003.10.056 |s2cid=16183757 |doi-access=free }}
  • {{cite journal | vauthors=Bharadwaj R, Qi W, Yu H |title=Identification of two novel components of the human NDC80 kinetochore complex. |journal=J. Biol. Chem. |volume=279 |issue= 13 |pages= 13076–85 |year= 2004 |pmid= 14699129 |doi= 10.1074/jbc.M310224200 |doi-access= free }}
  • {{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |doi-access= free }}
  • {{cite journal |vauthors=Joseph J, Liu ST, Jablonski SA, etal |title=The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. |journal=Curr. Biol. |volume=14 |issue= 7 |pages= 611–7 |year= 2004 |pmid= 15062103 |doi= 10.1016/j.cub.2004.03.031 |s2cid=13757802 |doi-access=free |bibcode=2004CBio...14..611J }}
  • {{cite journal | vauthors=Stucke VM, Baumann C, Nigg EA |title=Kinetochore localization and microtubule interaction of the human spindle checkpoint kinase Mps1. |journal=Chromosoma |volume=113 |issue= 1 |pages= 1–15 |year= 2005 |pmid= 15235793 |doi= 10.1007/s00412-004-0288-2 |s2cid=28231914 }}
  • {{cite journal | vauthors=Meraldi P, Draviam VM, Sorger PK |title=Timing and checkpoints in the regulation of mitotic progression. |journal=Dev. Cell |volume=7 |issue= 1 |pages= 45–60 |year= 2004 |pmid= 15239953 |doi= 10.1016/j.devcel.2004.06.006 |doi-access= free }}
  • {{cite journal |vauthors=Cheeseman IM, Niessen S, Anderson S, etal |title=A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. |journal=Genes Dev. |volume=18 |issue= 18 |pages= 2255–68 |year= 2004 |pmid= 15371340 |doi= 10.1101/gad.1234104 | pmc=517519 }}
  • {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
  • {{cite journal |vauthors=DeLuca JG, Dong Y, Hergert P, etal |title=Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. |journal=Mol. Biol. Cell |volume=16 |issue= 2 |pages= 519–31 |year= 2005 |pmid= 15548592 |doi= 10.1091/mbc.E04-09-0852 | pmc=545888 }}
  • {{cite journal |vauthors=Ciferri C, De Luca J, Monzani S, etal |title=Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. |journal=J. Biol. Chem. |volume=280 |issue= 32 |pages= 29088–95 |year= 2005 |pmid= 15961401 |doi= 10.1074/jbc.M504070200 |doi-access= free }}
  • {{cite journal |vauthors=Nousiainen M, Silljé HH, Sauer G, etal |title=Phosphoproteome analysis of the human mitotic spindle. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 14 |pages= 5391–6 |year= 2006 |pmid= 16565220 |doi= 10.1073/pnas.0507066103 | pmc=1459365 |bibcode=2006PNAS..103.5391N |doi-access=free }}
  • {{cite journal |vauthors=Gregory SG, Barlow KF, McLay KE, etal |title=The DNA sequence and biological annotation of human chromosome 1. |journal=Nature |volume=441 |issue= 7091 |pages= 315–21 |year= 2006 |pmid= 16710414 |doi= 10.1038/nature04727 |bibcode=2006Natur.441..315G |doi-access= free }}
  • {{cite journal |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 |s2cid=7827573 |doi-access=free }}
  • {{cite journal |vauthors=Ewing RM, Chu P, Elisma F, etal |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue= 1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 }}
  • {{cite journal |vauthors=Liu D, Ding X, Du J, etal |title=Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. |journal=J. Biol. Chem. |volume=282 |issue= 29 |pages= 21415–24 |year= 2007 |pmid= 17535814 |doi= 10.1074/jbc.M609026200 |doi-access= free }}

{{refend}}

{{gene-1-stub}}