Nakano vanishing theorem
{{short description|Generalizes the Kodaira vanishing theorem}}
In mathematics, specifically in the study of vector bundles over complex Kähler manifolds, the Nakano vanishing theorem, sometimes called the Akizuki–Nakano vanishing theorem, generalizes the Kodaira vanishing theorem.{{Cite journal|last=Hitchin|first=N. J.|date=1981-07-01|title=Kählerian Twistor Spaces|url=http://www2.maths.ox.ac.uk/~hitchin/hitchinlist/Hitchin%20KAHLERIAN%20TWISTOR%20SPACES%20(PLMS%201981).pdf|journal=Proceedings of the London Mathematical Society|language=en|volume=s3-43|issue=1|pages=133–150|doi=10.1112/plms/s3-43.1.133|issn=1460-244X|s2cid=121623969}}{{cite arXiv|last=Raufi|first=Hossein|date=2012-12-18|title=The Nakano vanishing theorem and a vanishing theorem of Demailly-Nadel type for holomorphic vector bundles|eprint=1212.4417|class=math.CV}}{{Cite book|url=https://books.google.com/books?id=ePf_AwAAQBAJ|title=Differential Geometry of Complex Vector Bundles|last=Kobayashi|first=Shoshichi|date=2014-07-14|publisher=Princeton University Press|isbn=9781400858682|pages=68|language=en}} Given a compact complex manifold M with a holomorphic line bundle F over M, the Nakano vanishing theorem provides a condition on when the cohomology groups equal zero. Here, denotes the sheaf of holomorphic (p,0)-forms taking values on F. The theorem states that, if the first Chern class of F is negative,
Alternatively, if the first Chern class of F is positive,
See also
References
= Original publications =
- {{Cite journal|last1=Akizuki|first1=Yasuo|last2=Nakano|first2=Shigeo|date=1954|title=Note on Kodaira-Spencer's proof of Lefschetz theorems|url=https://projecteuclid.org/euclid.pja/1195526105|journal=Proceedings of the Japan Academy|language=EN|volume=30|issue=4|pages=266–272|doi=10.3792/pja/1195526105|issn=0021-4280|doi-access=free}}
- {{Cite book|last=Nakano|first=Shigeo|date=1973|title=Number theory, algebraic geometry and commutative algebra — in honor of Yasuo Akizuki|publisher=Kinokuniya|chapter=Vanishing theorems for weakly 1-complete manifolds|pages=169–179}}
- {{Cite journal|last=Nakano|first=Shigeo|date=1974|title=Vanishing Theorems for Weakly 1-Complete Manifolds II|url=https://www.jstage.jst.go.jp/article/kyotoms1969/10/1/10_1_101/_article/-char/ja/|journal=Publications of the Research Institute for Mathematical Sciences|volume=10|issue=1|pages=101–110|doi=10.2977/prims/1195192175|doi-access=free}}
= Secondary sources =
{{Reflist}}
Category:Theorems in complex geometry
Category:Topological methods of algebraic geometry
Category:Theorems in algebraic geometry
{{analysis-stub}}