Nano-ARPES

Nano Angle-Resolved Photoemission Spectroscopy (Nano-ARPES), is a variant of the experimental technique ARPES (Angle-Resolved Photoemission Spectroscopy). It has the ability to precisely determine the electronic band structure of materials in momentum space with submicron lateral resolution. Due to its demanding experimental setup, this technique is much less extended than ARPES, widely used in condensed matter physics to experimentally determine the electronic properties of a broad range of crystalline materials. Nano-ARPES can access the electronic structure of well-ordered monocrystalline solids with high energy, momentum, and lateral resolution, even if they are nanometric or heterogeneous mesoscopic samples. Nano-ARPES technique is also based on Einstein's photoelectric effect, being photon-in electron-out spectroscopy, which has converted into an essential tool in studying the electronic structure of nanomaterials, like quantum and low dimensional materials.{{Cite journal|title=First NanoARPES User Facility Available at SOLEIL: An Innovative and Powerful Tool for Studying Advanced Materials|first1=José|last1=Avila|first2=María C.|last2=Asensio|date=March 4, 2014|journal=Synchrotron Radiation News|volume=27|issue=2|pages=24–30|doi=10.1080/08940886.2014.889549|bibcode=2014SRNew..27...24A |s2cid=123256799 |doi-access=free}}{{Cite journal|url=http://www.tandfonline.com/doi/abs/10.1080/08940886.2012.720162|title=Zooming in on Electronic Structure: NanoARPES at SOLEIL and ALS|first1=Aaron|last1=Bostwick|first2=Eli|last2=Rotenberg|first3=Jose|last3=Avila|first4=Maria C.|last4=Asensio|date=September 5, 2012|journal=Synchrotron Radiation News|volume=25|issue=5|pages=19–25|doi=10.1080/08940886.2012.720162|s2cid=122300142 |url-access=subscription}}

NanoARPES allows to determine experimentally the relationship between the binding energies and wave momenta of the electrons of the occupied electronic states of the bands with energies close and approximately 10-15 eV below the Fermi level. These electrons are ejected from a solid when it is illuminated by monochromatic photons with sufficient energy to emit photoelectrons from the surface of the material. These photoelectrons are detected by an electron analyzer placed close to the samples surface in vacuum to preserve the uncontaminated surfaces and to avoid the collisions with particles able to modify the energy and trajectory of the photoelectrons in their way to the spectrometer. As in the photoemission process, the momentum is conserved; therefore, the angular distribution of photoelectrons from a monocrystal, even if it is a nanometric size, is also enabled to directly reveal the momentum distribution of initial electronic states in that crystal. The Nano-ARPES results, as in the ARPES technique, are traditionally shown as energy-momentum dispersion relation along the high symmetry directions of the irreducible Brillouin Zone, displaying the band dispersions of the investigated materials.{{Cite journal|title=Is graphene on copper doped?|first1=Alexander J.|last1=Marsden|first2=Maria-Carmen|last2=Asensio|first3=José|last3=Avila|first4=Pavel|last4=Dudin|first5=Alexei|last5=Barinov|first6=Paolo|last6=Moras|first7=Polina M.|last7=Sheverdyaeva|first8=Thomas W.|last8=White|first9=Ian|last9=Maskery|first10=Giovanni|last10=Costantini|first11=Neil R.|last11=Wilson|first12=Gavin R.|last12=Bell|date=September 5, 2013|journal=Physica Status Solidi RRL|volume=7|issue=9|pages=643–646|doi=10.1002/pssr.201307224|s2cid=53512202 |doi-access=free}}{{Cite journal|title=Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study|first1=José|last1=Avila|first2=Ivy|last2=Razado|first3=Stéphane|last3=Lorcy|first4=Romain|last4=Fleurier|first5=Emmanuelle|last5=Pichonat|first6=Dominique|last6=Vignaud|first7=Xavier|last7=Wallart|first8=María C.|last8=Asensio|date=August 14, 2013|journal=Scientific Reports|volume=3|issue=1|pages=2439|doi=10.1038/srep02439|pmid=23942471 |pmc=3743056 }} When the emitted photoelectrons are shown by constant energy surfaces throughout large portions of the reciprocal space, Nano-ARPES can also precisely determine the Fermi surface of the investigated materials. Due to the unique ability to spatially map the electronic dispersion of the electrons in the samples, Nano-ARPES can also generate electronic imaging of nanomaterials with high binding energy and momentum resolution. As Nano-ARPES is a scanning technique,{{cite journal|title=Structural and electronic inhomogeneity of graphene revealed by Nano-ARPES|year=2017 |doi=10.1088/1742-6596/864/1/012029 |last1=Chen |first1=Chaoyu |last2=Avila |first2=José |last3=Arezki |first3=Hakim |last4=Yao |first4=Fei |last5=Nguyen |first5=Van Luan |last6=Lee |first6=Young Hee |last7=Boutchich |first7=Mohamed |last8=Asensio |first8=Maria C. |journal=Journal of Physics: Conference Series |volume=864 |page=012029 |s2cid=136186749 |doi-access=free }} it can use state-of-the-art ARPES spectrometers without requiring them to be able also to discriminate spatially the origin of the analysed photoelectrons. Consequently, Nano-ARPES instrumentation can profit from the most advanced spectrometers developed for ARPES setups, particularly those of the latest generation electron spectrometers with bidimensional detection and high energy and momentum resolution.{{cite journal|url=https://pubs.acs.org/doi/10.1021/nl502445j|title=Polycrystalline Graphene with Single Crystalline Electronic Structure|year=2014 |doi=10.1021/nl502445j |last1=Brown |first1=Lola |last2=Lochocki |first2=Edward B. |last3=Avila |first3=José |last4=Kim |first4=Cheol-Joo |last5=Ogawa |first5=Yui |last6=Havener |first6=Robin W. |last7=Kim |first7=Dong-Ki |last8=Monkman |first8=Eric J. |last9=Shai |first9=Daniel E. |last10=Wei |first10=Haofei I. |last11=Levendorf |first11=Mark P. |last12=Asensio |first12=María |last13=Shen |first13=Kyle M. |last14=Park |first14=Jiwoong |journal=Nano Letters |volume=14 |issue=10 |pages=5706–5711 |pmid=25207847 |bibcode=2014NanoL..14.5706B |url-access=subscription }}{{cite journal|url=https://iopscience.iop.org/article/10.1088/1361-648X/aa6487|title=Chemical and electronic structure imaging of graphene on Cu: a NanoARPES study|year=2017 |doi=10.1088/1361-648X/aa6487 |last1=Chen |first1=Chaoyu |last2=Avila |first2=José |last3=Asensio |first3=Maria C. |journal=Journal of Physics: Condensed Matter |volume=29 |issue=18 |page=183001 |pmid=28260698 |s2cid=206080914 |url-access=subscription }}

Background

The comprehension of the electronic band structure of solids is applied in many fields of condensed matter physics, contributing to the microscopic understanding of many phenomenological trends and guiding the interpretation of experimental spectra in photoemission, optics, inelastic neutron scattering, specific heat, among others, including the effect of spin-polarisation. Most modern band electronic structure theoretical methods employ Density Functional Theory to solve the full many-body Schrödinger equation for electrons in a solid. The consolidated experimental and theoretical approach to describe the electronic structure of solids allows the straightforward visualization of the difference between conductors, insulators, and semiconductors according to the presence of permitted and forbidden electronic states of particular energy and momentum, which can be calculated by quantum mechanics and measured using ARPES.{{cite journal|title=Interferometer-controlled soft X-ray scanning photoemission microscope at SOLEIL|year=2013 |doi=10.1088/1742-6596/425/13/132013 |last1=Avila |first1=José |last2=Razado-Colambo |first2=Ivy |last3=Lorcy |first3=Stephane |last4=Giorgetta |first4=Jean-Luc |last5=Polack |first5=François |last6=Asensio |first6=Maria C. |journal=Journal of Physics: Conference Series |volume=425 |issue=13 |page=132013 |arxiv=1212.6443 |bibcode=2013JPhCS.425m2013A |s2cid=118581861 |doi-access=free }}

The ARPES technique has the unique ability to determine the band structure directly. It thus helps understand the degree and type of electron interaction in the solids, corroborating or contesting band electronic structure results calculated using different theoretical approaches. However, this technique's lateral resolution, manipulation, and orientation of submicrometric of heterogeneous samples are rather limited. That is because the electrons measured in ARPES are all those electrons ejected by the photo-absorption process prompted by the incident photons. If the illuminated area of the sample is large enough to cover nonhomogeneous areas, the detected ejected electrons are the sum up of all the photoelectrons emitted by all different illuminated patches. If each area has a distinctive electronic band structure, the ARPES spectra will show the average of all of them weighted according to the size of each different patch present in the illuminated area.{{Cite journal|url=https://www.cambridge.org/core/journals/diamond-light-source-proceedings/article/abs/nanometre-multiaxis-manipulator-with-interferometer-control/7E285CB9A81CB91CF1137DF52874B5D5|title=Nanometre multi-axis manipulator with interferometer control|first1=J.-L.|last1=Giorgetta|first2=M.-C.|last2=Asensio|first3=J.|last3=Avila|date=April 5, 2011|journal=Diamond Light Source Proceedings|volume=1|issue=MEDSI-6|pages=e59|via=Cambridge University Press|doi=10.1017/S2044820111000128|url-access=subscription}}

In fact, many complex materials are constituted by disoriented small monocrystals or composed of several nanometric monocrystals. Traditional ARPES can only provide their average electronic structure if the patch size is smaller than the spot size of the ARPES setup, typically 200 um. This limitation is also present in samples with micrometric and submicrometric zones with distinctive chemical composition due to undesired side chemical reactions, for example, originating by the contamination or oxidation of the primitive sample. Hence, being the spot size of the monochromatic photon beam typically over 200 ųm side for conventional ARPES, only homogeneous samples with this size or bigger can be studied.

Consequently, a sub-micrometric lateral resolution should be added to ARPES to perform the experimental determination of the electronic structure of small crystalline materials and large samples with heterogeneities. Nano-ARPES has implemented this lateral discrimination by focalising the size of the photon incident beam within the nanometric scale. Similarly to ARPES, the electronic band structure of nanomaterials can be directly measured using Nano-ARPES by measuring the ejected electrons' kinetic energy, velocity, and absolute momentum.{{cite journal|title=ANTARES, a scanning photoemission microscopy beamline at SOLEIL|year=2013 |doi=10.1088/1742-6596/425/19/192023 |last1=Avila |first1=Jose |last2=Razado-Colambo |first2=Ivy |last3=Lorcy |first3=Stehane |last4=Lagarde |first4=Bruno |last5=Giorgetta |first5=Jean-Luc |last6=Polack |first6=François |last7=Asensio |first7=Maria C. |journal=Journal of Physics: Conference Series |volume=425 |issue=19 |page=192023 |arxiv=1212.6440 |bibcode=2013JPhCS.425s2023A |s2cid=119257472 |doi-access=free }}

The photon beam focusing to a spot size down to nanometric scale has been routinely achieved in a few well-known X-ray-based methods, such as scanning transmission X-ray microscopy (STXM) and scanning photoemission microscopy (SPEM).{{Cite web|url=https://www.researchgate.net/publication/256923134|title=Photoelectron microscopy and applications in surface and materials science}} However, these techniques are much less demanding because they typically use incident photon energies higher than 150 eV and require non-angle resolved measurements, only recording integrated signals proportional to the X-Ray absorption coefficient and core-level photoelectrons, respectively. In both cases, the Fresnel Zone Plates (FZPs) performance is the essential component determining the lateral resolution, varying from micro- to nanometric lateral resolution. Nowadays, several companies in the market provide FZPs with a resolution better than 30 nm, which has facilitated the construction and operation of several x-Ray based microscopes such as STXM and SPEM instruments in different synchrotron radiation facilities like Elettra, ALS, CLS,{{Cite web|url=https://www.lightsource.ca/|title=Canadian Light Source|website=www.lightsource.ca}} and MAX-lab,{{Cite web|url=https://www.maxiv.lu.se/|title=MAX IV – We make the invisible visible|first=Erik|last=Granström|date=November 3, 2021}} among others. Nano-ARPES technique, however, requires much lower incident photon energy, typically from 6 eV to 100 eV) to detect those photoelectrons emitted by the electronic states below and close to the Fermi level, which cross-section increases as the incident photon energy decreases.{{Cite journal|title=Atomic photoionization cross sections beyond the electric dipole approximation|first1=Iulia Emilia|last1=Brumboiu|first2=Olle|last2=Eriksson|first3=Patrick|last3=Norman|date=January 28, 2019|journal=The Journal of Chemical Physics|volume=150|issue=4|pages=044306|doi=10.1063/1.5083649|pmid=30709292 |s2cid=53308675 |doi-access=free|arxiv=1810.08542}}{{cite web|url=https://xdb.lbl.gov/xdb.pdf|title=X-RAY DATA BOOKLET}} An alternative k-space imaging approach is based on energy-filtered photoemission microscopes (PEEMs), The lateral resolution is achieved using an electron optical column instead of focalizing the incident photon beam. This full-field k-space version of PEEM is available commercially. However, for this commercially available full-field PEEM version with k-space imaging, achieving high energy and momentum resolution is challenging.{{Cite web|url=https://www.researchgate.net/publication/223745872|title=Energy-filtered XPEEM with NanoESCA using synchrotron and laboratory X-ray sources: Principles and first demonstrated results}}

Instrumentation

Typically, high energy and momentum resolution ARPES experiments are performed at synchrotrons, which can provide bright and tunable high-energy photons sources to record the electronic band structure of ordered materials directly. That yields sharp and precise E vs k dispersions and constant energy surfaces, including those corresponding to the Fermi surface of the studied materials.

The conventional ARPES systems consist of a monochromatic light source to deliver a narrow beam of photons, a sample holder connected to a manipulator used to position the samples angular and translationally concerning the electron spectrometer (detector), and the incident light beam focus. The equipment is contained within an ultra-high vacuum (UHV) environment, which protects the sample from undesired contamination and prevents scattering of the emitted electrons. After being dispersed along two perpendicular directions for kinetic energy and emission angle, the electrons are directed to the detector and counted to provide ARPES spectra-slices of the band structure along one momentum direction.{{cite journal|title=Optimal focusing system of the Fresnel zone plates at the Synchrotron SOLEIL NanoARPES beamline|year=2017 |doi=10.1088/1742-6596/849/1/012039 |last1=Avila |first1=José |last2=Boury |first2=Antoine |last3=Caja-Muñoz |first3=Borja |last4=Chen |first4=Chaoyu |last5=Lorcy |first5=Stephane |last6=Asensio |first6=Maria C. |journal=Journal of Physics: Conference Series |volume=849 |page=012039 |s2cid=126062389 |doi-access=free }}{{cite journal|title=High-resolution Electronic and Chemical imaging of wonder nanomaterials beyond graphene|year=2017 |doi=10.1088/1742-6596/864/1/012036 |last1=Avila |first1=José |last2=Chen |first2=Chaoyu |last3=Lorcy |first3=Stephane |last4=Asensio |first4=Maria C. |journal=Journal of Physics: Conference Series |volume=864 |page=012036 |s2cid=139631499 |doi-access=free }}

The main difference of its typical instrumental setup from other conventional ARPES apparatus is that the soft x-ray beam is focused to a submicrometric spot using Fresnel Zone plates (FZP) lenses. The specimens can be mounted on a high-precision manipulator that ensures the nanoscale sample positioning in the x, y, and z directions, where the polar angle (Θ) and the azimuthal angle (Ψ) can also be automatically scanned.{{cite journal|title=Electronic structure of polycrystalline CVDgraphene revealed by Nano-ARPES|year=2017 |doi=10.1088/1742-6596/849/1/012019 |last1=Chen |first1=Chaoyu |last2=Avila |first2=José |last3=Asensio |first3=Maria C. |journal=Journal of Physics: Conference Series |volume=849 |page=012019 |s2cid=3913193 |doi-access=free }}

This basic instrumentation allows two operating modes: Nano-ARPES punctual mode (operating mode type 1) with nano-spot that maps the band structure of nanometric crystalline solids to study quasiparticle dynamics in highly correlated and non-correlated materials as in conventional ARPES, and Nano-ARPES imaging mode (operating mode type 2) that measures the spatial distribution in real space of photoelectrons of a selected binding energy and momentum values range.

State-of-the-art Nano-ARPES microscopes are equipped with continuous interferometric control of the position of the samples for the FZPs, which avoids thermal and mechanical drifts. That is required to prevent undesirable distortions of the recorded Nano-ARPES images (operating mode type 2) and precision and reproducibility of E vs. k dispersion curves along specific directions of the reciprocal space.

File:Nano-ARPES.jpg

Energy constant surfaces in the reciprocal space & Fermi surface mapping

In the Nano-ARPES setups, the used analyzers are the hemispherical electron energy typically installed in high energy and angular resolution conventional ARPES apparatus. They use a slit to prevent the mixing of momentum and energy channels and, consequently, can only take angular maps in one direction. To record maps over energy and two-dimensional momentum space as in conventional ARPES, either the sample needs to be rotated, or the collected photoelectrons beam should be discriminated inside the spectrometer with the electrostatic lens, keeping the sample fixed. The energy-angle-angle maps are converted to binding energy-k//x-k//y maps. These images display constant energy surfaces as a function of the reciprocal space's k//x and k//y waves vectors. The most remarkable constant energy surface is the Fermi surface map, obtained by detecting those photoelectrons with binding energy right at the Fermi level.{{Cite report |url=https://www.osti.gov/biblio/603514 |title=Fermi surface mapping: Techniques and visualization |last1=Rotenberg |first1=E. |last2=Denlinger |first2=J. D. |date=1997-04-01 |publisher=Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |issue=LBNL-39981 |language=English |last3=Kevan |first3=S. D. |last4=Goodman |first4=K. W. |last5=Tobin |first5=J. G. |last6=Mankey |first6=G. J.|osti=603514 }}

Applications

The Nano-ARPES technique is an essential tool to resolve the electronic band structure of mesoscopic or heterogeneous materials{{Cite journal|url=https://onlinelibrary.wiley.com/doi/10.1002/pssr.201510346|title=Band renormalization and spin polarization of MoS 2 in graphene/MoS 2 heterostructures|first1=Horacio|last1=Coy-Diaz|first2=François|last2=Bertran|first3=Chaoyu|last3=Chen|first4=José|last4=Avila|first5=Julien|last5=Rault|first6=Patrick|last6=Le Fèvre|first7=Maria C.|last7=Asensio|first8=Matthias|last8=Batzill|date=December 5, 2015|journal=Physica Status Solidi RRL|volume=9|issue=12|pages=701–706|doi=10.1002/pssr.201510346|s2cid=94404212 |url-access=subscription}} in diverse condensed Matter fields like quantum materials{{cite journal|title=Nano-Angle Resolved Photoemission Spectroscopy on Topological insulator Sb2Te3 nanowires responsible of quantum transport|year=2017 |doi=10.1088/1742-6596/864/1/012041 |last1=Avila |first1=José |last2=Chen |first2=Chaoyu |last3=Arango |first3=Yulieth C. |last4=Huang |first4=Liubing |last5=Grützmacher |first5=Detlev |last6=Lüth |first6=Hans |last7=Lu |first7=J. Grace |last8=Schäpers |first8=Thomas |last9=Asensio |first9=Maria C. |journal=Journal of Physics: Conference Series |volume=864 |issue=1 |page=012041 |bibcode=2017JPhCS.864a2041A |s2cid=139311071 |doi-access=free }}{{Cite journal|url=https://pubs.acs.org/doi/10.1021/acs.nanolett.6b04698|title=Stacking-Dependent Electronic Structure of Trilayer Graphene Resolved by Nanospot Angle-Resolved Photoemission Spectroscopy|first1=Changhua|last1=Bao|first2=Wei|last2=Yao|first3=Eryin|last3=Wang|first4=Chaoyu|last4=Chen|first5=José|last5=Avila|first6=Maria C.|last6=Asensio|first7=Shuyun|last7=Zhou|date=March 8, 2017|journal=Nano Letters|volume=17|issue=3|pages=1564–1568|doi=10.1021/acs.nanolett.6b04698|pmid=28222596 |arxiv=1702.08307 |s2cid=206737699 }} high-temperature superconductors, topological materials{{Cite journal|title=Quantum Transport and Nano Angle-resolved Photoemission Spectroscopy on the Topological Surface States of Single Sb2Te3 Nanowires|first1=Yulieth C.|last1=Arango|first2=Liubing|last2=Huang|first3=Chaoyu|last3=Chen|first4=Jose|last4=Avila|first5=Maria C.|last5=Asensio|first6=Detlev|last6=Grützmacher|first7=Hans|last7=Lüth|first8=Jia Grace|last8=Lu|first9=Thomas|last9=Schäpers|date=September 1, 2016|journal=Scientific Reports|volume=6|issue=1|pages=29493|doi=10.1038/srep29493|pmid=27581169 |pmc=5007488 |bibcode=2016NatSR...629493A |s2cid=18067360 |doi-access=free}}{{Cite journal|url=https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00875|title=Nanomosaic of Topological Dirac States on the Surface of Pb 5 Bi 24 Se 41 Observed by Nano-ARPES|first1=Kosuke|last1=Nakayama|first2=Seigo|last2=Souma|first3=Chi Xuan|last3=Trang|first4=Daichi|last4=Takane|first5=Chaoyu|last5=Chen|first6=Jose|last6=Avila|first7=Takashi|last7=Takahashi|first8=Satoshi|last8=Sasaki|first9=Kouji|last9=Segawa|first10=Maria Carmen|last10=Asensio|first11=Yoichi|last11=Ando|first12=Takafumi|last12=Sato|date=June 12, 2019|journal=Nano Letters|volume=19|issue=6|pages=3737–3742|doi=10.1021/acs.nanolett.9b00875|pmid=31038974 |s2cid=141421492 |arxiv=1905.02565}} semiconductors metals,{{Cite journal|url=https://pubs.acs.org/doi/10.1021/acs.nanolett.6b00609|title=Band Alignment and Minigaps in Monolayer MoS 2 -Graphene van der Waals Heterostructures|first1=Debora|last1=Pierucci|first2=Hugo|last2=Henck|first3=Jose|last3=Avila|first4=Adrian|last4=Balan|first5=Carl H.|last5=Naylor|first6=Gilles|last6=Patriarche|first7=Yannick J.|last7=Dappe|first8=Mathieu G.|last8=Silly|first9=Fausto|last9=Sirotti|first10=A. T. Charlie|last10=Johnson|first11=Maria C.|last11=Asensio|first12=Abdelkarim|last12=Ouerghi|date=July 13, 2016|journal=Nano Letters|volume=16|issue=7|pages=4054–4061|doi=10.1021/acs.nanolett.6b00609|pmid=27281693 |url-access=subscription}}{{Cite journal|title=NanoARPES of twisted bilayer graphene on SiC: absence of velocity renormalization for small angles|first1=I.|last1=Razado-Colambo|first2=J.|last2=Avila|first3=J.-P.|last3=Nys|first4=C.|last4=Chen|first5=X.|last5=Wallart|first6=M.-C.|last6=Asensio|first7=D.|last7=Vignaud|date=June 6, 2016|journal=Scientific Reports|volume=6|issue=1|pages=27261|doi=10.1038/srep27261|pmid=27264791 |pmc=4893698 |s2cid=4621431 |doi-access=free}} insulators with not-too-large band gap and in a wide variety of low dimensional materials{{Cite journal|url=https://pubs.acs.org/doi/10.1021/acs.nanolett.8b00589|title=Resolving Deep Quantum-Well States in Atomically Thin 2H-MoTe 2 Flakes by Nanospot Angle-Resolved Photoemission Spectroscopy|first1=Hongyun|last1=Zhang|first2=Changhua|last2=Bao|first3=Zeyu|last3=Jiang|first4=Kenan|last4=Zhang|first5=Hao|last5=Li|first6=Chaoyu|last6=Chen|first7=José|last7=Avila|first8=Yang|last8=Wu|first9=Wenhui|last9=Duan|first10=Maria C.|last10=Asensio|first11=Shuyun|last11=Zhou|date=August 8, 2018|journal=Nano Letters|volume=18|issue=8|pages=4664–4668|doi=10.1021/acs.nanolett.8b00589|pmid=29991260 |s2cid=206747128 |url-access=subscription}}{{Cite journal|title=Nanospot Angle-Resolved Photoemission Study of Bernal-Stacked Bilayer Graphene on Hexagonal Boron Nitride: Band Structure and Local Variation of Lattice Alignment|first1=Frédéric|last1=Joucken|first2=Eberth A.|last2=Quezada-López|first3=Jose|last3=Avila|first4=Chaoyu|last4=Chen|first5=John L.|last5=Davenport|first6=Hechin|last6=Chen|first7=Kenji|last7=Watanabe|first8=Takashi|last8=Taniguchi|first9=Maria Carmen|last9=Asensio|first10=Jairo|last10=Velasco Jr|date=April 23, 2019|journal=Physical Review B|volume=99|issue=16|pages=161406|doi=10.1103/PhysRevB.99.161406|arxiv=1904.11080|s2cid=131776865 }} and heterostructures{{cite journal|url=https://iopscience.iop.org/article/10.1088/2053-1583/aa6e6a|title=Substrate dependent electronic structure variations of van der Waals heterostructures of MoSe2 or MoSe2(1−x)Te2x grown by van der Waals epitaxy|year=2017 |doi=10.1088/2053-1583/aa6e6a |last1=Diaz |first1=Horacio Coy |last2=Ma |first2=Yujing |last3=Kolekar |first3=Sadhu |last4=Avila |first4=José |last5=Chen |first5=Chaoyu |last6=Asensio |first6=Maria C. |last7=Batzill |first7=Matthias |journal=2D Materials |volume=4 |issue=2 |page=025094 |s2cid=100291151 |url-access=subscription }}{{cite journal|url=https://iopscience.iop.org/article/10.1088/1361-648X/ab832c|title=The electronic band structure of quasi-one-dimensional van der Waals semiconductors: the effective hole mass of ZrS3 compared to TiS3|year=2020 |doi=10.1088/1361-648X/ab832c |last1=Yi |first1=Hemian |last2=Gilbert |first2=Simeon J. |last3=Lipatov |first3=Alexey |last4=Sinitskii |first4=Alexander |last5=Avila |first5=Jose |last6=Abourahma |first6=Jehad |last7=Komesu |first7=Takashi |last8=Asensio |first8=Maria C. |last9=Dowben |first9=Peter A. |journal=Journal of Physics: Condensed Matter |volume=32 |issue=29 |pages=29LT01 |pmid=32209749 |s2cid=214643946 |url-access=subscription }} with effects of confinements,{{Cite journal|title=Strain and Spin-Orbit Coupling Engineering in Twisted WS2/Graphene Heterobilayer|first1=Cyrine|last1=Ernandes|first2=Lama|last2=Khalil|first3=Hugo|last3=Henck|first4=Meng-Qiang|last4=Zhao|first5=Julien|last5=Chaste|first6=Fabrice|last6=Oehler|first7=Alan T. Charlie|last7=Johnson|first8=Maria C.|last8=Asensio|first9=Debora|last9=Pierucci|first10=Marco|last10=Pala|first11=José|last11=Avila|first12=Abdelkarim|last12=Ouerghi|date=October 31, 2021|journal=Nanomaterials|volume=11|issue=11|pages=2921|doi=10.3390/nano11112921|pmid=34835687|pmc=8625993|doi-access=free }}{{Cite journal|title=Interplay of crystal thickness and in-plane anisotropy and evolution of quasi-one dimensional electronic character in ReSe$_{2}$|first1=Lewis S.|last1=Hart|first2=Surani M.|last2=Gunasekera|first3=James L.|last3=Webb|first4=Marcin|last4=Mucha-Kruczynski|first5=José|last5=Avila|first6=María C.|last6=Asensio|first7=Daniel|last7=Wolverson|date=July 15, 2021|journal=Physical Review B|volume=104|issue=3|pages=035421|doi=10.1103/PhysRevB.104.035421|arxiv=2012.12659|s2cid=229363550 }} different stackings{{Cite journal|url=https://www.nature.com/articles/s41565-020-0743-0|title=Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation|first1=Van Luan|last1=Nguyen|first2=Dinh Loc|last2=Duong|first3=Sang Hyub|last3=Lee|first4=José|last4=Avila|first5=Gyeongtak|last5=Han|first6=Young-Min|last6=Kim|first7=Maria C.|last7=Asensio|first8=Se-Young|last8=Jeong|first9=Young Hee|last9=Lee|date=October 5, 2020|journal=Nature Nanotechnology|volume=15|issue=10|pages=861–867|via=www.nature.com|doi=10.1038/s41565-020-0743-0|pmid=32719494 |s2cid=220809120 |url-access=subscription}}{{Cite journal|title=Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene|first1=Zhaoli|last1=Gao|first2=Sheng|last2=Wang|first3=Joel|last3=Berry|first4=Qicheng|last4=Zhang|first5=Julian|last5=Gebhardt|first6=William M.|last6=Parkin|first7=Jose|last7=Avila|first8=Hemian|last8=Yi|first9=Chaoyu|last9=Chen|first10=Sebastian|last10=Hurtado-Parra|first11=Marija|last11=Drndić|first12=Andrew M.|last12=Rappe|first13=David J.|last13=Srolovitz|first14=James M.|last14=Kikkawa|first15=Zhengtang|last15=Luo|first16=Maria C.|last16=Asensio|first17=Feng|last17=Wang|first18=A. T. Charlie|last18=Johnson|date=January 28, 2020|journal=Nature Communications|volume=11|issue=1|pages=546|doi=10.1038/s41467-019-14022-3|pmid=31992694 |pmc=6987307 |s2cid=139184337 |doi-access=free}} and hybridization. Also, electronic structure changes associated with all types of phase transitions, charge density waves,{{Cite journal|title=Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary|first1=Yujing|last1=Ma|first2=Horacio Coy|last2=Diaz|first3=José|last3=Avila|first4=Chaoyu|last4=Chen|first5=Vijaysankar|last5=Kalappattil|first6=Raja|last6=Das|first7=Manh-Huong|last7=Phan|first8=Tilen|last8=Čadež|first9=José M. P.|last9=Carmelo|first10=Maria C.|last10=Asensio|first11=Matthias|last11=Batzill|date=February 6, 2017|journal=Nature Communications|volume=8|issue=1|pages=14231|doi=10.1038/ncomms14231|pmid=28165445 |pmc=5303875 |s2cid=7676216 |doi-access=free}} bands hybridization{{Cite journal|title=Strong interlayer hybridization in the aligned SnS2/WSe2 hetero-bilayer structure|first1=Jihene|last1=Zribi|first2=Lama|last2=Khalil|first3=Biyuan|last3=Zheng|first4=José|last4=Avila|first5=Debora|last5=Pierucci|first6=Thibault|last6=Brulé|first7=Julien|last7=Chaste|first8=Emmanuel|last8=Lhuillier|first9=Maria C.|last9=Asensio|first10=Anlian|last10=Pan|first11=Abdelkarim|last11=Ouerghi|date=July 24, 2019|journal=npj 2D Materials and Applications|volume=3|issue=1|pages=1–7|doi=10.1038/s41699-019-0109-3|s2cid=198500933 |doi-access=free|hdl=10261/211309|hdl-access=free}}{{Cite journal|url=https://pubs.acs.org/doi/10.1021/acs.jpcc.2c05589|title=Strong Metal–Sulfur Hybridization in the Conduction Band of the Quasi-One-Dimensional Transition-Metal Trichalcogenides: TiS 3 and ZrS 3|first1=Simeon J.|last1=Gilbert|first2=Hemian|last2=Yi|first3=Tula|last3=Paudel|first4=Alexey|last4=Lipatov|first5=Andrew J.|last5=Yost|first6=Alexander|last6=Sinitskii|first7=Evgeny Y.|last7=Tsymbal|first8=Jose|last8=Avila|first9=Maria C.|last9=Asensio|first10=Peter A.|last10=Dowben|date=October 20, 2022|journal=The Journal of Physical Chemistry C|volume=126|issue=41|pages=17647–17655|doi=10.1021/acs.jpcc.2c05589|s2cid=252825831 |url-access=subscription}} phase separation,{{Cite journal|url=https://pubs.acs.org/doi/10.1021/acs.nanolett.9b01670#:~:text=We%20clarify%20that%20the%20chemisorption,PL)%20in%20WS2%20monolayers|title=The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS2|year=2019 |doi=10.1021/acs.nanolett.9b01670 |last1=Hu |first1=Zhenliang |last2=Avila |first2=Jose |last3=Wang |first3=Xinyun |last4=Leong |first4=Jin Feng |last5=Zhang |first5=Qi |last6=Liu |first6=Yanpeng |last7=Asensio |first7=Maria C. |last8=Lu |first8=Junpeng |last9=Carvalho |first9=Alexandra |last10=Sow |first10=Chorng Haur |last11=Castro Neto |first11=Antonio Helio |journal=Nano Letters |volume=19 |issue=7 |pages=4641–4650 |pmid=31189314 |s2cid=189814839 |url-access=subscription }} charge transfer, and in-operando devices can be revealed by combining nano-lateral resolution with high energy and momentum resolution.{{cite journal|url=https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00649|title=Visualizing the Effect of an Electrostatic Gate with Angle-Resolved Photoemission Spectroscopy|year=2019 |doi=10.1021/acs.nanolett.9b00649 |last1=Joucken |first1=Frédéric |last2=Avila |first2=Jose |last3=Ge |first3=Zhehao |last4=Quezada-Lopez |first4=Eberth A. |last5=Yi |first5=Hemian |last6=Le Goff |first6=Romaric |last7=Baudin |first7=Emmanuel |last8=Davenport |first8=John L. |last9=Watanabe |first9=Kenji |last10=Taniguchi |first10=Takashi |last11=Asensio |first11=Maria Carmen |last12=Velasco |first12=Jairo |journal=Nano Letters |volume=19 |issue=4 |pages=2682–2687 |pmid=30888827 |arxiv=1904.09484 |s2cid=84184270 }}

References