Negativity (quantum mechanics)#Logarithmic negativity

In quantum mechanics, negativity is a measure of quantum entanglement which is easy to compute. It is a measure deriving from the PPT criterion for separability.{{cite journal|author1=K. Zyczkowski |author2=P. Horodecki |author3=A. Sanpera |author4=M. Lewenstein |title=Volume of the set of separable states|journal=Phys. Rev. A|year=1998|volume=58|issue=2 |pages=883–92|bibcode = 1998PhRvA..58..883Z |doi = 10.1103/PhysRevA.58.883|arxiv = quant-ph/9804024|s2cid=119391103 }} It has been shown to be an entanglement monotone{{cite thesis|author=J. Eisert|title=Entanglement in quantum information theory|year=2001|publisher=University of Potsdam|arxiv=quant-ph/0610253|bibcode=2006PhDT........59E}}{{cite journal|author1=G. Vidal |author2=R. F. Werner |title=A computable measure of entanglement|journal=Phys. Rev. A|year=2002|volume=65|issue=3 |pages=032314|bibcode = 2002PhRvA..65c2314V|doi=10.1103/PhysRevA.65.032314|arxiv = quant-ph/0102117|s2cid=32356668 }} and hence a proper measure of entanglement.

Definition

The negativity of a subsystem A can be defined in terms of a density matrix \rho as:

:\mathcal{N}(\rho) \equiv \frac{||\rho^{\Gamma_A}||_1-1}{2}

where:

  • \rho^{\Gamma_A} is the partial transpose of \rho with respect to subsystem A
  • ||X||_1 = \text{Tr}|X| = \text{Tr} \sqrt{X^\dagger X} is the trace norm or the sum of the singular values of the operator X .

An alternative and equivalent definition is the absolute sum of the negative eigenvalues of \rho^{\Gamma_A}:

: \mathcal{N}(\rho) = \left|\sum_{\lambda_i < 0} \lambda_i \right| = \sum_i \frac{|\lambda_{i}|-\lambda_{i}}{2}

where \lambda_i are all of the eigenvalues.

=Properties=

:\mathcal{N}(\sum_{i}p_{i}\rho_{i}) \le \sum_{i}p_{i}\mathcal{N}(\rho_{i})

:\mathcal{N}(P(\rho)) \le \mathcal{N}(\rho)

where P(\rho) is an arbitrary LOCC operation over \rho

Logarithmic negativity

The logarithmic negativity is an entanglement measure which is easily computable and an upper bound to the distillable entanglement.{{cite journal|author=M. B. Plenio|title=The logarithmic negativity: A full entanglement monotone that is not convex|journal=Phys. Rev. Lett.|year=2005|volume=95|issue=9 |pages=090503|bibcode = 2005PhRvL..95i0503P|doi=10.1103/PhysRevLett.95.090503|pmid=16197196 |arxiv = quant-ph/0505071|s2cid=20691213 }}

It is defined as

:E_N(\rho) \equiv \log_2 ||\rho^{\Gamma_A}||_1

where \Gamma_A is the partial transpose operation and || \cdot ||_1 denotes the trace norm.

It relates to the negativity as follows:

:E_N(\rho) := \log_2( 2 \mathcal{N} +1)

=Properties=

The logarithmic negativity

  • can be zero even if the state is entangled (if the state is PPT entangled).
  • does not reduce to the entropy of entanglement on pure states like most other entanglement measures.
  • is additive on tensor products: E_N(\rho \otimes \sigma) = E_N(\rho) + E_N(\sigma)
  • is not asymptotically continuous. That means that for a sequence of bipartite Hilbert spaces H_1, H_2, \ldots (typically with increasing dimension) we can have a sequence of quantum states \rho_1, \rho_2, \ldots which converges to \rho^{\otimes n_1}, \rho^{\otimes n_2}, \ldots (typically with increasing n_i) in the trace distance, but the sequence E_N(\rho_1)/n_1, E_N(\rho_2)/n_2, \ldots does not converge to E_N(\rho).
  • is an upper bound to the distillable entanglement

References

  • This page uses material from [http://www.quantiki.org/wiki/Negativity Quantiki] licensed under GNU Free Documentation License 1.2

{{reflist}}

Category:Quantum information science