Nested stack automaton

{{Bots|deny=AWB}}

File:Pushdown-overview.svg, but has less restrictions for using them.]]

In automata theory, a nested stack automaton is a finite automaton that can make use of a stack containing data which can be additional stacks.{{cite journal |last1=Aho |first1=Alfred V. |s2cid=685569 |authorlink1=Alfred Aho |title=Nested Stack Automata |journal=Journal of the ACM |date=July 1969 |volume=16 |issue=3 |pages=383–406 |doi=10.1145/321526.321529 |doi-access=free }}

Like a stack automaton, a nested stack automaton may step up or down in the stack, and read the current symbol; in addition, it may at any place create a new stack, operate on that one, eventually destroy it, and continue operating on the old stack. This way, stacks can be nested recursively to an arbitrary depth; however, the automaton always operates on the innermost stack only.

A nested stack automaton is capable of recognizing an indexed language,{{cite book | last = Partee | author-link = Barbara Partee | first = Barbara |author2=Alice ter Meulen |author2-link=Alice ter Meulen|author3=Robert E. Wall | title = Mathematical Methods in Linguistics | url = https://archive.org/details/mathematicalmeth00part_211| url-access = limited| year = 1990 | publisher = Kluwer Academic Publishers | pages = [https://archive.org/details/mathematicalmeth00part_211/page/n556 536]–542 | isbn = 978-90-277-2245-4 }} and in fact the class of indexed languages is exactly the class of languages accepted by one-way nondeterministic nested stack automata.{{cite book| author=John E. Hopcroft, Jeffrey D. Ullman| title=Introduction to Automata Theory, Languages, and Computation| year=1979| publisher=Addison-Wesley| isbn=0-201-02988-X| url-access=registration| url=https://archive.org/details/introductiontoau00hopc}} Here:p.390

Nested stack automata should not be confused with embedded pushdown automata, which have less computational power.{{citation needed|reason=The claim is currently supported only by the order in which both notions appear in the 'Automata theory: formal languages and formal grammars' overview table below.|date=February 2014}}

Formal definition

=Automaton=

A (nondeterministic two-way) nested stack automaton is a tuple {{angbr|Q,Σ,Γ,δ,q0,Z0,F,[,],]}} where

  • Q, Σ, and Γ is a nonempty finite set of states, input symbols, and stack symbols, respectively,
  • [, ], and ] are distinct special symbols not contained in Σ ∪ Γ,
  • [ is used as left endmarker for both the input string and a (sub)stack string,
  • ] is used as right endmarker for these strings,
  • ] is used as the final endmarker of the string denoting the whole stack.Aho originally used "$", "¢", and "#" instead of "[", "]", and "]", respectively. See Aho (1969), p.385 top.
  • An extended input alphabet is defined by Σ' = Σ ∪ {[,]}, an extended stack alphabet by Γ' = Γ ∪ {]}, and the set of input move directions by D = {-1,0,+1}.
  • δ, the finite control, is a mapping from Q × Σ' × (Γ' ∪ [Γ' ∪ {], []}) into finite subsets of Q × D × ([Γ*D), such that δ mapsJuxataposition denotes string (set) concatenation, and has a higher binding priority than set union ∪. For example, [Γ' denotes the set of all length-2 strings starting with "[" and ending with a symbol from Γ'.

     Q × Σ' × [Γinto subsets of Q × D × [Γ*(pushdown mode),
Q × Σ' × Γ'into subsets of Q × D × D(reading mode),
Q × Σ' × [Γ'into subsets of Q × D × {+1}(reading mode),
Q × Σ' × {]}into subsets of Q × D × {-1}(reading mode),
Q × Σ' × (Γ' ∪ [Γ')into subsets of Q × D × [Γ*](stack creation mode), and
Q × Σ' × {[]}into subsets of Q × D × {ε},(stack destruction mode),

:Informally, the top symbol of a (sub)stack together with its preceding left endmarker "[" is viewed as a single symbol;Aho (1969), p.385 top then δ reads

:* the current state,

:* the current input symbol, and

:* the current stack symbol,

: and outputs

:* the next state,

:* the direction in which to move on the input, and

:* the direction in which to move on the stack, or the string of symbols to replace the topmost stack symbol.

  • q0Q is the initial state,
  • Z0 ∈ Γ is the initial stack symbol,
  • FQ is the set of final states.

=Configuration=

A configuration, or instantaneous description of such an automaton consists in a triple

{{angbr|

q,

[a1a2...ai...an-1],

[Z1X2...Xj...Xm-1]

}},

where

  • qQ is the current state,
  • [a1a2...ai...an-1] is the input string; for convenience, a0 = [ and an = ] is definedAho originally used the left and right stack marker, viz. $ and ¢, as right and left input marker, respectively. The current position in the input, viz. i with 0 ≤ in, is marked by underlining the respective symbol.
  • [Z1X2...Xj...Xm-1] is the stack, including substacks; for convenience, X1 = [Z1 The top symbol of a (sub)stack together with its preceding left endmarker "[" is viewed as a single symbol. and Xm = ] is defined. The current position in the stack, viz. j with 1 ≤ jm, is marked by underlining the respective symbol.

=Example=

An example run (input string not shown):

class=wikitable
Action

! Step

! colspan=11 | Stack

| 1:      

| style="font-family:monospace"|[a

style="font-family:monospace"| bstyle="font-family:monospace"| [kstyle="font-family:monospace"| ]style="font-family:monospace"| [pstyle="font-family:monospace"| ]style="font-family:monospace"| cstyle="font-family:monospace"| ]

| colspan=3 |  

create substack      

| 2:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| [pstyle="font-family:monospace"| [rstyle="font-family:monospace"| sstyle="font-family:monospace"| ]style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|c}}style="font-family:monospace"| {{color|#808080|]}}
pop

| 3:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|[p}}style="font-family:monospace"| [sstyle="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|c}}style="font-family:monospace"| {{color|#808080|]}}

|  

pop

| 4:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|[p}}style="font-family:monospace"| []style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|c}}style="font-family:monospace"| {{color|#808080|]}}

| colspan=2 |  

destroy substack

| 5:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|[p}}style="font-family:monospace"| ]style="font-family:monospace"| {{color|#808080|c}}style="font-family:monospace"| {{color|#808080|]}}

| colspan=4 |  

move down

| 6:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|[p}}style="font-family:monospace"| ]style="font-family:monospace"| cstyle="font-family:monospace"| {{color|#808080|]}}

| colspan=4 |  

move up

| 7:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|[p}}style="font-family:monospace"| ]style="font-family:monospace"| cstyle="font-family:monospace"| {{color|#808080|]}}

| colspan=4 |  

move up

| 8:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| [pstyle="font-family:monospace"| ]style="font-family:monospace"| {{color|#808080|c}}style="font-family:monospace"| {{color|#808080|]}}

| colspan=4 |  

push

| 9:

| style="font-family:monospace"|{{color|#808080|[a}}

style="font-family:monospace"| {{color|#808080|b}}style="font-family:monospace"| {{color|#808080|[k}}style="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| [nstyle="font-family:monospace"| ostyle="font-family:monospace"| pstyle="font-family:monospace"| {{color|#808080|]}}style="font-family:monospace"| {{color|#808080|c}}style="font-family:monospace"| {{color|#808080|]}}

| colspan=2 |  

Properties

When automata are allowed to re-read their input ("two-way automata"), nested stacks do not result in additional language recognition capabilities, compared to plain stacks.{{cite journal |last1=Beeri |first1=C. |title=Two-way nested stack automata are equivalent to two-way stack automata |journal=Journal of Computer and System Sciences |date=June 1975 |volume=10 |issue=3 |pages=317–339 |doi=10.1016/s0022-0000(75)80004-3 |doi-access=free }}

Gilman and Shapiro used nested stack automata to solve the word problem in virtually free groups, similarly to the Muller–Schupp theorem.{{cite tech report |last1=Shapiro |first1=Robert Gilman Michael |title=On groups whose word problem is solved by a nested stack automaton |date=4 December 1998 |arxiv=math/9812028 |s2cid=12716492 |citeseerx=10.1.1.236.2029 }}

Notes

{{Reflist|group=note}}

References

{{Reflist}}

{{Formal languages and grammars}}

Category:Models of computation

Category:Automata (computation)