Nevado Tres Cruces

{{good article}}

{{Short description|Volcanic massif in the Andes}}

{{Infobox mountain

| photo = Tres-cruces.jpg

| photo_caption = Tres Cruces from Ojos del Salado to the east. The higher south summit is on the left, the central summit on the right.

|name=Nevado Tres Cruces

|coordinates={{coord|27.08|S|68.8|W|display=inline,intitle|region:AR_type:mountain_}}

|coordinates_ref=

|map=Chile

|elevation_m=6748

|age=Pleistocene

}}

Nevado Tres Cruces is a massif of volcanic origin in the Andes Mountains on the border of Argentina and Chile. It has two main summits, Tres Cruces Sur at {{convert|6748|m}} and Tres Cruces Centro at {{convert|6629|m|abbr=on}} and a third minor summit, Tres Cruces Norte {{convert|6030|m|abbr=on}}. Tres Cruces Sur is the sixth highest mountain in the Andes.

The volcano has an extended history of activity, going back at least 1.5 million years. A number of lava domes surround the complex and a number of craters lie on its summits. The main volcano is of rhyodacitic composition and has generated two major ignimbritic eruptions, one 1.5 million years ago and a second 67,000 years ago. The last eruption was 28,000 years ago, but the volcano is a candidate source for a Holocene eruption and could erupt again in the future.

Geography and geomorphology

Nevado Tres Cruces is located in the High Andes of Copiapo{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} and straddles the boundary between Chile (Atacama Region) and Argentina (Catamarca Province). The Salar de Maricunga is located west of Nevado Tres Cruces,{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} the Almagro valley north and its tributary the Barrancas Blancas valley northeast of it. The international road between Chile and Argentina from Paso de San Francisco passes north of Nevado Tres Cruces; an unpaved road runs through the Barrancas Blancas valley.{{sfn|Nüsser|Dame|2015|p=68}} The Rio Lomas and Rio Salado originate from its southwestern and southeastern flanks, respectively.{{sfn|Loyola|López-Mendoza|Carrasco|Glascock|2023|p=6}}

The volcano is massive, covering an area of about {{convert|1000|km2}}, and consists of a {{convert|10|km}} long and {{convert|5|km}} wide{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} north-south trending chain made up of at least three overlapping volcanoes.{{sfn|Moreno|Gibbons|2007|p=154}} These volcanoes have diameters of {{convert|4|-|5|km}} and rise about {{convert|800|-|1600|m}} above the surrounding terrain.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} The highest summit, and sixth-highest summit of South America, of Nevado Tres Cruces is the {{convert|6748|m}} high{{efn|Other estimates are {{convert|6330|m}} and {{convert|6620|m}}, and {{convert|6030|m}} for the northern summit.{{sfn|Gspurning|Lazar|Sulzer|2006|p=61}} Owing to the region being extremely remote, elevations are often uncertain.{{sfn|Nüsser|Dame|2015|p=66}}}} southern summit, which is also the least eroded of the three volcanoes that make up Nevado Tres Cruces. The southern summit consists of two overlapping cones, the western and older one of which has two explosion craters while the eastern one is capped by a summit lava dome. The central volcano reaches an elevation of {{convert|6629|m}}, has the steepest slopes and is tilted to the west.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} The northern volcano has a summit elevation of {{convert|6206|m}} and is capped by a glacially eroded, {{convert|1|km}} wide crater.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} There are two even more minor summits at the north end of the massif, Punta Torre {{convert|6320|m|abbr=on}} and Punta Atacama {{convert|6206|m|abbr=on}}.

File:Nevado Tres Cruces.jpg

The volcanoes are formed by explosion craters, lava domes including couleés, lava flows, tephra, and base surge and pyroclastic flow deposits.{{sfn|Moreno|Gibbons|2007|p=154}} Fallout of explosive eruptions cover the slopes of the southern summit{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} and deposits of a large Plinian eruption and its eruption column cover much of Nevado Tres Cruces and its surroundings.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=293}} Normal faults{{efn|A normal fault is an usually steep fault where the hanging wall is moving downward with respect to the footwall.}} cut across the volcanic structures{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} and a north-northwest trending fault system appears to have directed the development of the three volcanoes.{{sfn|Kay|Coira|Mpodozis|2008|p=170}}

Domo del Indio on the southeastern flank is {{convert|3.2|x|1.8|km}} wide and {{convert|235|m}} high. Between it and Nevado Tres Cruces lies a {{convert|2|x|1.5|km}} wide and {{convert|150|m}} deep explosion crater that contains the La Espinilla dome, which is {{convert|45|m}} high and {{convert|200|-|250|m}} wide.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=294}} Another lava dome is known as Domo las Vicuñas. The Tres Cruces Ignimbrite was erupted by Nevado Tres Cruces{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=45}} and lies between Nevado Tres Cruces and Ojos del Salado and reaches a thickness of {{convert|100|m}}.{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=44}} It covers a surface area of {{convert|81.31|km2}}.{{sfn|Guzmán|Grosse|Montero-López|Hongn|2014|p=176}} The ignimbrite consists of pumice and volcanic ash,{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=45}} is poorly welded and has a low crystal content.{{sfn|Guzmán|Grosse|Montero-López|Hongn|2014|p=176}}

These edifices rise over older volcanoes, which crop out north of Nevado Tres Cruces in the form of the volcanoes Cristi ({{convert|5900|m}} high), Lemp and Rodrigo.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} The latter has a caldera at {{convert|5950|m}} elevation. Lemp is located just south of Rodrigo.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=295}} Puntiagudo crops out south of Nevado Tres Cruces.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} Two other centres lie on the southwestern foot: {{convert|5194|m}} high Paitur and {{convert|5361|m}} Trioblite.{{sfn|Loyola|López-Mendoza|Carrasco|Glascock|2023|pp=4,6}} The older structures are smoothened by erosion and lack primary features.{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=40}} A thick and large lava flow crops out west of the volcano; it has a surface area of {{convert|3.5|x|5.5|km2}} and a thickness of {{convert|150|-|200|m}}.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} Three older lava domes, all heavily eroded, are found on the western flank.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|pp=293-294}}

= Glaciation =

Small glaciers occur on Nevado Tres Cruces on the eastern and southern sides{{sfn|Nüsser|Dame|2015|pp=68-69}} above {{convert|5500|m}} elevation. They are best developed above {{convert|5750|m}} elevation and consist of small ice bodies (none exceeding {{convert|1|km2}}) in glacial cirques and at the edges of lava flows.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} One of these is hosted in a cirque on the southeastern flank of the southern summit.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} Ice area was constant between 1937 and 1956 but declined by almost half between 1985 and 2016. Non-moving ice without crevasses has been found on the northern summit,{{sfn|Gspurning|Lazar|Sulzer|2006|p=69}} and there are debris-covered glaciers on the volcanoes. {{sfn|García|Ulloa|Amigo|Milana|2017|p=7}} Some sources however deny that any glacier occurs on Nevado Tres Cruces.

Moraines occur above {{convert|4400|m}} elevation{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=291}} and a well-developed terminal moraine at the foot of Nevado Tres Cruces, at {{convert|4200|m}} elevation, has been broken by the Lamas River. There are cirques at {{convert|5500|m}} on the eastern sides of Nevado Tres Cruces and traces of periglacial occur.{{sfn|García|Ulloa|Amigo|Milana|2017|p=10}} Presently, the equilibrium line altitude lies at about {{convert|5800|m}}; during the last glacial maximum the equilibrium line altitude descended to {{convert|5500|m}}.

Geology

Off the western coast of South America, the Nazca Plate subducts into the Peru-Chile Trench underneath the South America Plate at a rate of {{convert|7|-|9|cm/year|in/year}}. The subduction has given rise to three volcanic belts in the Andes, from north to south these are the Northern Volcanic Zone, the Central Volcanic Zone (CVZ) and the Southern Volcanic Zone. These are separated by gaps where Pleistocene and Holocene volcanism is absent and where the downgoing plate sinks into the mantle at a shallow angle,{{sfn|Moreno|Gibbons|2007|p=148}} squeezing out the overlying asthenosphere.{{sfn|Goss|Kay|Mpodozis|2011|p=103}}

Nevado Tres Cruces is part of the CVZ,{{sfn|Moreno|Gibbons|2007|p=150}} which spans Peru, Bolivia, Argentina and Chile and features over 1100 volcanoes. These old but uneroded volcanoes{{sfn|Moreno|Gibbons|2007|p=147}} comprise both stratovolcanoes and lava dome complexes, as well as monogenetic volcanoes and calderas which have produced large ignimbrites. Among the better known volcanoes are Acamarachi, Aguas Calientes, Arintica, Aucanquilcha, Cerro Bajo, Cerro Escorial, Chiliques, Colachi, Cordon de Puntas Negras, Escalante, Guallatiri, Guayaques, Irruputuncu, Isluga, Lascar, Lastarria, Licancabur, Llullaillaco, Olca-Paruma, Ollagüe, Ojos del Salado, Parinacota, Pular, Putana, San Pedro, Sierra Nevada de Lagunas Bravas, Socompa, Taapaca and Tacora. These volcanoes are remote and thus, aside from potential impacts of ash clouds on aerial travel, they do not constitute a major threat to humans.{{sfn|Moreno|Gibbons|2007|p=150}}

Nevado Tres Cruces together with neighbouring El Fraile, El Muertito, El Muerto, El Solo, Nevado de Incahuasi, Nevado San Francisco and Ojos del Salado forms the Ojos del Salado volcanic chain. It is a group of mostly dacitic{{sfn|Grosse|Orihashi|Guzmán|Sumino|2018|p=5}} volcanoes that is oblique with respect to the local trend of Pleistocene-Holocene volcanoes{{sfn|Moreno|Gibbons|2007|p=154}} and was active during the last one million years.{{sfn|Goss|Kay|Mpodozis|2011|p=104}} During the Oligocene and Miocene volcanic activity occurred in the Maricunga Belt, then around 6 million years ago it migrated eastward.{{sfn|Goss|Kay|Mpodozis|2011|p=103}} South of Nevado Tres Cruces lies the Los Patos volcano.{{sfn|Kay|Coira|Mpodozis|2008|p=166}}

= Composition =

Nevado Tres Cruces has erupted rocks ranging from dacite to rhyodacite{{sfn|Moreno|Gibbons|2007|p=154}} which define a potassium-rich calc-alkaline suite.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=294}} They feature biotite and hornblende phenocrysts and there is evidence that magma mixing took place during the genesis of the magmas.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} Older volcanic rocks are andesites with clinopyroxene, hornblende, labradorite and orthopyroxene as phenocryst phases.{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=40}} The occurrence of obsidian has been reported but was not exploited in prehistoric times.{{sfn|Loyola|López-Mendoza|Carrasco|Glascock|2023|p=6}}

Climate and vegetation

Strong winds, intense insolation, high diurnal and seasonal temperature variations characterize the region. At high elevations, precipitation falls mainly in winter in the form of snow and hail.{{sfn|Nüsser|Dame|2015|p=67}} The lack of visible life in the hyperarid region has led to numerous travellers deeming it a "lunar landscape".{{sfn|Nüsser|Dame|2015|p=66}} There are wetlands associated with the Rio Lamas on Nevado Tres Cruces. The area is part of the Nevado Tres Cruces National Park created in 1994.{{sfn|Nüsser|Dame|2015|p=74}}

Human history

The volcano was climbed on February 24, 1937, by members of the Second Polish Andean Expedition, Stefan Osiecki and {{ill|Witold Paryski|pl|Witold Paryski}}.

Eruption history

Nevado Tres Cruces was active during the Pliocene and Pleistocene, with the oldest activity pre-dating 1.5 million years ago.{{sfn|Moreno|Gibbons|2007|p=154}} Potassium-argon dating has yielded ages of 3.4±0.5 and 4.9±0.4 million years ago.{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=40}} Rodrigo erupted 4.4±0.6 million years ago, Lemp 2.8±0.3 million years ago and Cristi 2.5±1.3 million years ago.{{sfn|Kay|Coira|Mpodozis|2008|p=170}} The three western lava domes were emplaced 2.1±0.3 million years ago.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=294}} The western lava flow is dated to be 1.4±0.4 million years old.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} The well-preserved Indio and La Espinilla lava domes were erupted 350,000±40,000 and 168,000±6,000 years ago, respectively.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=294}} Volcanic activity took place in two stages separated by a long pause,.{{sfn|Grosse|Orihashi|Guzmán|Sumino|2018|p=19}} The time-averaged growth rate of {{convert|0.01|-|0.02|km3/kyr|mi3/kyr}}{{sfn|Grosse|Orihashi|Guzmán|Sumino|2018|p=20}} is slow for a volcano on a convergent margin.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=294}}

1.5 million years ago an explosive eruption produced pyroclastic flows in the western part of the volcano. The flows are now covered with glacial and alluvial sediments and form a fan. A large explosive eruption 67,000±9,000 years ago deposited pyroclastic flows east and southeast of Nevado Tres Cruces. These pyroclastic flows form deposits extensive surrounding Ojos del Salado - to which they were originally attributed - and a {{convert|15|m}} thick base surge deposit is also linked to this eruption.{{sfn|Moreno|Gibbons|2007|p=154}}{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=293}}{{efn|In light of the descriptions in Moreno and Gibbons 2007,{{sfn|Moreno|Gibbons|2007|p=154}} Kay, Coira and Mpodozis 2008{{sfn|Kay|Coira|Mpodozis|2008|p=170}} and Rubiolo et al. 2003 this eruption appears to be the source of the Tres Cruces Ignimbrite.{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=45}} Other dates for that ignimbrite, obtained by argon-argon dating, are 190,000±30,000, 520,000±150,000{{sfn|Rubiolo|Pereyra|Martínez|Seggiaro|2003|p=45}} and 520,000±70,000 years ago.{{sfn|Guzmán|Grosse|Montero-López|Hongn|2014|p=187}}}}

= Most recent eruption and hazards =

The last eruption 28,000±22,000 years ago{{sfn|Grosse|Orihashi|Guzmán|Sumino|2018|p=21}} produced the summit dome of the southern summit.{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=292}} There are no known historical eruptions and the volcano is not considered to be active.{{sfn|Moreno|Gibbons|2007|p=154}} In light of the long repose periods relative to the date of the last eruption, future eruptions are possible but are unlikely to have high impact, as there is virtually no infrastructure in the region{{sfn|Gardeweg|Clavero|Mpodozis|Pérez de A.|2000|p=294}} other than the {{Interlanguage link|International Route CH-31|es|Ruta 23-CH}}.

Based on geochemical data, Nevado Tres Cruces has been proposed as the source of a tephra layer in the Bolson de Fiambalá{{sfn|Fernandez-Turiel|Perez-Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=22}} that has also been identified in the Tafi del Valle area and the Valles Calchaquies.{{sfn|Fernandez-Turiel|Perez-Torrado|Rodriguez-Gonzalez|Saavedra|2019|p=23}} The eruption producing this tephra fall took place about 600-700 AD. Archeological and vegetation studies observations in the Fiambalá region indicates that this tephra fall event had substantial impact on local communities and vegetation. However, the last securely dated eruption of Nevado Tres Cruces goes back to 67,000 years ago, making a correlation questionable.

Notes

{{notelist}}

References

{{Reflist|refs=

{{cite journal |last1=Meléndez |first1=Ana Soledad |last2=Burry |first2=Lidia Susana |last3=Palacio |first3=Patricia Irene |last4=Trivi |first4=Matilde Elena |last5=Quesada |first5=Marcos Nicolás |last6=Zuccarelli Freire |first6=Verónica |last7=D'Antoni |first7=Héctor |title=Ecosystems dynamics and environmental management: An NDVI reconstruction model for El Alto-Ancasti mountain range (Catamarca, Argentina) from 442 AD through 1980 AD |journal=Quaternary Science Reviews |date=January 2024 |volume=324 |page=9 |doi=10.1016/j.quascirev.2023.108450}}

{{cite journal |last1=Báez |first1=W. |last2=Bardelli |first2=L. |last3=Sampietro-Vattuone |first3=M.M. |last4=Peña Monné |first4=J.L. |last5=Bertea |first5=E. |last6=Cirer |first6=M. |title=Revisiting the Holocene tephrochronology of northwestern Argentina: Insights from geochemical characterization of the tephras from the Tafí valley |journal=Journal of South American Earth Sciences |date=February 2024 |volume=134 |page=12 |doi=10.1016/j.jsames.2023.104745 |bibcode=2024JSAES.13404745B |s2cid=266392853 |url=https://www.sciencedirect.com/science/article/pii/S0895981123005576 |language=en}}

{{Cite journal |last1=Lencina |first1=Agustina I. |last2=Soria |first2=Mariana N. |last3=Colla |first3=M. Florencia |last4=Cury |first4=Leonardo Fadel |last5=Farías |first5=M. Eugenia |last6=Gomez |first6=Fernando J. |date=15 June 2023 |title=In situ growth of modern oncoids from Salado river, Salar de la Laguna Verde Complex, Argentina |url=https://www.sciencedirect.com/science/article/pii/S0037073823000684 |journal=Sedimentary Geology |volume=451 |page=2 |doi=10.1016/j.sedgeo.2023.106396 |bibcode=2023SedG..45106396L |s2cid=258297521 |issn=0037-0738}}

{{Cite journal |last=Marek |first=Aneta |date=2016 |title=Andy jako rejon eksploracji górskiej Polaków do 1989 r. |url=https://spg.apsl.edu.pl/baza/wydawn/spg13/marek.pdf |journal=Słupskie Prace Geograficzne |language=pl |volume=13 |page=89 |archive-url=https://web.archive.org/web/20230616174507/https://spg.apsl.edu.pl/baza/wydawn/spg13/marek.pdf |archive-date=16 June 2023}}

{{cite conference|conference=15th Chilean Geological Congress|access-date=13 November 2022|date=December 2018|url=https://congresogeologicochileno.cl/wp-content/uploads/2018/12/Libro-de-Actas-XVCongresoGeologicoChileno2018-2.pdf|language=es|title=Evolución espacial y temporal de glaciares descubiertos en la Región de Atacama, Chile|first1=Betzabé|last1=Flores|first2=Ayón|last2=García|first3=Christopher|last3=Ulloa|page=742}}

{{cite report|language=es|url=https://biblioteca.sernageomin.cl/opac/datafiles/CGCH_GAMB_17_TextoyMapa.pdf|archive-url=https://web.archive.org/web/20210629145638/https://biblioteca.sernageomin.cl/opac/datafiles/CGCH_GAMB_17_TextoyMapa.pdf|url-status=dead|archive-date=June 29, 2021|access-date=20 August 2021|issn=0717-7305|publisher=SERVICIO NACIONAL DE GEOLOGÍA Y MINERÍA|title=Peligros volcánicos de la Zona Norte de Chile|first1=Álvaro R.|last1=Amigo|first2=Daniel U.|last2=Bertin|first3=Gabriel L.|last3=Orozco|year=2012|series=Carta geológica de Chile: Serie Geología Ambiental|volume=17|page=23}}

{{cite encyclopedia |last=Nahm |first=A. L. |year=2015 |chapter=Normal Fault |editor-last1=Hargitai |editor-first1=H. |editor-last2=Kereszturi |editor-first2=Á. |title=Encyclopedia of Planetary Landforms |pages=1458–1466 |publisher=Springer|doi=10.1007/978-1-4614-3134-3_519|isbn=978-1-4614-3133-6 }}

{{cite journal|last1=Lliboutry|first1=L.|first2=O.|last2=González|first3=J.|last3=Simken|title=Les glaciers du désert chilien|language=fr|journal=Extrait des Comptes Rendus et Rapports. Assemblee Generale de Toronto|volume=4|year=1958|page=298}}

{{cite journal |last1=Brüggen |first1=J. |title=Zur Glazialgeologie der chilenischen Anden |journal=Geologische Rundschau |date=1 April 1929 |volume=20 |issue=1 |page=5 |doi=10.1007/BF01805072 |bibcode=1929GeoRu..20....1B |s2cid=128436981 |url=https://link.springer.com/article/10.1007/BF01805072 |language=de |issn=1432-1149}}

{{Cite web|url=https://www.fs.fed.us/psw/cirmount/publications/pdf/Mtn_Views_nov_14.pdf#page=6|title=Parque Nacional Nevado de Tres Cruces, Chile: A Significant Coldspot of Biodiversity in a High Andean Ecosystem|last1=Rundel|first1=Philip W.|last2=Kleier|first2=Catherine C.|date=2014|website=fs.fed.us|page=3}}

{{cite journal |last1=Seelenfreund |first1=Andrea |last2=Miranda |first2=Javier |last3=Dinator |first3=María Inés |last4=Morales |first4=J. Roberto |title=CARACTERIZACIÓN DE OBSIDIANAS DEL NORTE Y CENTRO SUR DE CHILE MEDIANTE ANÁLISIS DE FLUORESCENCIA DE RAYOS X |journal=Chungará (Arica) |date=December 2005 |volume=37 |issue=2 |page=247 |doi=10.4067/S0717-73562005000200009 |url=https://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0717-73562005000200009&lng=en&nrm=iso |issn=0717-7356|doi-access=free }}

{{cite journal |last1=Parajón |first1=Hernán |title=EL RESCATE. LA TOMA RÁPIDA DE DECISIONES CON BAJOS MÁRGENES DE ERROR |journal=Perspectivas de las Ciencias Económicas y Jurídicas |date=11 August 2019 |volume=9 |issue=2 |page=95 |url=https://cerac.unlpam.edu.ar/index.php/perspectivas/article/view/4021 |language=es |issn=2250-4087}}

{{cite journal |last1=Ratto |first1=Norma Rosa |last2=Aranda |first2=Claudia |last3=Luna |first3=Leandro |title=Bioarqueología de Las Papas (Departamento Tinogasta, Catamarca): primeros resultados |journal=Revista del Museo de La Plata |date=30 June 2019 |volume=4 |issue=1 |pages=103–120 |doi=10.24215/25456377e071 |s2cid=198756179 |url=https://publicaciones.fcnym.unlp.edu.ar/rmlp/article/view/2356/1829 |language=es |issn=2545-6377|doi-access=free }}

{{cite journal |last1=Ratto |first1=Norma |last2=Orgaz |first2=Martín |last3=Coll |first3=Luis |last4=Feely |first4=Anabel |title=Vulcanismo regional y su impacto en el bolsón de Fiambalá (Departamento Tinogasta, Catamarca): el caso del sitio Cardoso |journal=Relaciones de la Sociedad Argentina de Antropología |date=December 2019 |volume=tomo 44 (2) |page=327 |url=http://sedici.unlp.edu.ar/handle/10915/90162 |language=es |issn=1852-1479}}

{{cite journal |last1=Haselton |first1=Kirk |last2=Hilley |first2=George |last3=Strecker |first3=Manfred R. |title=Average Pleistocene Climatic Patterns in the Southern Central Andes: Controls on Mountain Glaciation and Paleoclimate Implications |journal=The Journal of Geology |date=March 2002 |volume=110 |issue=2 |page=221 |doi=10.1086/338414 |bibcode=2002JG....110..211H |s2cid=18111576 |url=https://www.journals.uchicago.edu/doi/full/10.1086/338414 |issn=0022-1376}}

{{cite journal |last1=Goss |first1=Adam R. |last2=Kay |first2=Suzanne Mahlburg |last3=Mpodozis |first3=Constantino |title=Andean Adakite-like high-Mg Andesites on the Northern Margin of the Chilean–Pampean Flat-slab (27–28·5°S) Associated with Frontal Arc Migration and Fore-arc Subduction Erosion |journal=Journal of Petrology |date=November 2013 |volume=54 |issue=11 |page=2198 |doi=10.1093/petrology/egt044 |url=https://academic.oup.com/petrology/article/54/11/2193/1438515|doi-access=free }}

{{cite journal |last1=Rivera |first1=Andrés |author2=Casassa, Gino |last3=Acuña |first3=César |last4=Lange |first4=Heiner |title=Variaciones recientes de glaciares en Chile |journal=Investigaciones Geográficas |date=1 January 2000 |issue=34 |pages=ág. 29–60 |doi=10.5354/0719-5370.2000.27709 |url=https://semanariorepublicano.uchile.cl/index.php/IG/article/view/27709 |language=es |issn=0719-5370|doi-access=free }}

{{cite journal |last1=Barcaza |first1=Gonzalo |last2=Nussbaumer |first2=Samuel U. |last3=Tapia |first3=Guillermo |last4=Valdés |first4=Javier |last5=García |first5=Juan-Luis |last6=Videla |first6=Yohan |last7=Albornoz |first7=Amapola |last8=Arias |first8=Víctor |title=Glacier inventory and recent glacier variations in the Andes of Chile, South America |journal=Annals of Glaciology |date=July 2017 |volume=58 |issue=75pt2 |page=174 |doi=10.1017/aog.2017.28 |bibcode=2017AnGla..58..166B |language=en |issn=0260-3055|doi-access=free }}

{{Cite report|last1=Espinosa|first1=Marión|last2=Bustamante|first2=Ana María|last3=Orellana|first3=Lesly|last4=Henríquez|first4=Gabriel|last5=Ortíz|first5=Gabriel|last6=Altamirano A.|first6=Tania V.|last7=Poblete|first7=Verónica|last8=Cárdenas Gasmuri|first8=María Ilia|last9=Mancilla|first9=Bárbara|date=2013|title=Recorriendo los humedales altoandinos de Arica a Atacama : vida y refugio de la biodiversidad. (Pub. CIREN N°175)|url=http://bibliotecadigital.ciren.cl//handle/123456789/2148|language=es|archive-url=https://web.archive.org/web/20210803134757/http://bibliotecadigital.ciren.cl//handle/123456789/2148|archive-date=3 August 2021}}

{{cite journal |last1=Mark |first1=B.G. |last2=Harrison |first2=S.P. |last3=Spessa |first3=A. |last4=New |first4=M. |last5=Evans |first5=D.J.A. |last6=Helmens |first6=K.F. |title=Tropical snowline changes at the last glacial maximum: A global assessment |journal=Quaternary International |date=September 2005 |volume=138-139 |page=18 |doi=10.1016/j.quaint.2005.02.012 |bibcode=2005QuInt.138..168M |url=https://www.sciencedirect.com/science/article/pii/S1040618205000479 |language=en |issn=1040-6182}}

{{Cite GVP|vn=355862|name=Tres Cruces}}, [https://volcano.si.edu/volcano.cfm?vn=355862 Synonyms & Subfeatures]

{{Cite GVP|vn=355862|name=Tres Cruces}}

{{Cite web|url=https://www.estiloandino.com/trescrucesnorte-1|title=Tres Cruces Norte|last1=Almaraz|first1=Guillermo}}

}}

= Sources =

{{refbegin}}

  • {{cite journal |last1=Fernandez-Turiel |first1=J. L. |last2=Perez-Torrado |first2=F. J. |last3=Rodriguez-Gonzalez |first3=A. |last4=Saavedra |first4=J. |last5=Carracedo |first5=J. C. |last6=Rejas |first6=M. |last7=Lobo |first7=A. |last8=Osterrieth |first8=M. |last9=Carrizo |first9=J. I. |last10=Esteban |first10=G. |last11=Gallardo |first11=J. |last12=Ratto |first12=N. |title=La gran erupción de hace 4.2 ka cal en Cerro Blanco, Zona Volcánica Central, Andes: nuevos datos sobre los depósitos eruptivos holocenos en la Puna sur y regiones adyacentes |journal=Estudios Geológicos |date=30 June 2019 |volume=75 |issue=1 |pages=e088 |doi=10.3989/egeol.43438.515 |url=https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/982/1201 |language=es |issn=1988-3250|hdl=10553/69940 |s2cid=181824845 |hdl-access=free }}
  • {{cite journal |last1=García |first1=Ayôn |last2=Ulloa |first2=Christopher |last3=Amigo |first3=Gonzalo |last4=Milana |first4=Juan Pablo |last5=Medina |first5=Catherine |title=An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile) |journal=Quaternary International |date=May 2017 |volume=438 |pages=4–19 |doi=10.1016/j.quaint.2017.04.033 |bibcode=2017QuInt.438....4G |url=https://www.sciencedirect.com/science/article/pii/S1040618216310564 |language=en |issn=1040-6182|hdl=11336/64866 |hdl-access=free }}
  • {{cite conference|title=EL MACIZO TRES CRUCES: UN COMPLEJO VOLCANICO LONGEVO Y POTENCIALMENTE ACTIVO EN LA ALTA CORDILLERA DE COPIAPO, CHILE|language=es|last1=Gardeweg|first1=M.C.|last2=Clavero|first2=J.|last3=Mpodozis|first3=C.|last4=Pérez de A.|first4=C.|last5=Villeneuve|first5=M.|conference=IX CONGRESO GEOLOGICO CHILENO|date=2000|location=Puerto Varas, Chile|url=https://biblioserver.sernageomin.cl/opac/DataFiles/10072v2pp291_295.pdf|archive-url=https://web.archive.org/web/20151122131653/http://biblioserver.sernageomin.cl/opac/DataFiles/10072v2pp291_295.pdf|url-status=dead|archive-date=November 22, 2015}}
  • {{cite journal |last1=Goss |first1=A. R. |last2=Kay |first2=S. M. |last3=Mpodozis |first3=C. |title=The geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~28°S) |journal=Contributions to Mineralogy and Petrology |date=January 2011 |volume=161 |issue=1 |pages=101–128 |doi=10.1007/s00410-010-0523-1|bibcode=2011CoMP..161..101G |s2cid=129735092 }}
  • {{cite journal |last1=Grosse |first1=Pablo |last2=Orihashi |first2=Yuji |last3=Guzmán |first3=Silvina R. |last4=Sumino |first4=Hirochika |last5=Nagao |first5=Keisuke |title=Eruptive history of Incahuasi, Falso Azufre and El Cóndor Quaternary composite volcanoes, southern Central Andes |journal=Bulletin of Volcanology |date=4 April 2018 |volume=80 |issue=5 |pages=44 |doi=10.1007/s00445-018-1221-5 |bibcode=2018BVol...80...44G |s2cid=134869390 |url=https://link.springer.com/article/10.1007/s00445-018-1221-5 |language=en |issn=1432-0819|hdl=11336/81460 |hdl-access=free }}
  • {{cite journal|journal=Grazer Schriften der Geographie und Raumforschung|volume=41|year=2006|url=https://www.staff.tugraz.at/viktor.kaufmann/8_lazar_gspurning_sulzer.pdf|language=de|title=Regional Climate and Snow/Glacier Distribution in Southern Upper Atacama (Ojos del Salado) - an integrated statistical, GIS and RS based approach|first1=Josef|last1=Gspurning|first2=Reinhold|last2=Lazar|first3=Wolfgang|last3=Sulzer}}
  • {{cite journal |last1=Guzmán |first1=Silvina |last2=Grosse |first2=Pablo |last3=Montero-López |first3=Carolina |last4=Hongn |first4=Fernando |last5=Pilger |first5=Rex |last6=Petrinovic |first6=Ivan |last7=Seggiaro |first7=Raúl |last8=Aramayo |first8=Alejandro |title=Spatial–temporal distribution of explosive volcanism in the 25–28°S segment of the Andean Central Volcanic Zone |journal=Tectonophysics |date=December 2014 |volume=636 |pages=170–189 |doi=10.1016/j.tecto.2014.08.013 |bibcode=2014Tectp.636..170G |url=https://www.sciencedirect.com/science/article/pii/S0040195114004715 |language=en |issn=0040-1951|hdl=11336/32061 |hdl-access=free }}
  • {{cite journal |last1=Loyola |first1=Rodrigo |last2=López-Mendoza |first2=Patricio |last3=Carrasco |first3=Carlos |last4=Glascock |first4=Michael D. |last5=Flores-Aqueveque |first5=Valentina |last6=Méndez |first6=Víctor |last7=Varas |first7=Daniel |last8=Orrego |first8=Vanessa |title=Provenance and long-term circulation of archaeological obsidian in the Puna de Copiapó (25-27°S), South-Central Andes |journal=Journal of Archaeological Science: Reports |date=October 2023 |volume=51 |pages=104134 |doi=10.1016/j.jasrep.2023.104134 |bibcode=2023JArSR..51j4134L |s2cid=260298587 |url=https://www.sciencedirect.com/science/article/pii/S2352409X23003097 |language=en}}
  • {{cite book |last1=Moreno |first1=Teresa |last2=Gibbons |first2=Wes |title=The Geology of Chile |date=2007 |publisher=Geological Society of London |isbn=978-1-86239-220-5 |language=en}}
  • {{cite report|title=Der Ojos del Salado in der Atacama: Forschungsgeschichte und aktuelle Probleme im trockensten Hochgebirge der Erde|first1=Marcus|last1=Nüsser|first2=Juliane|last2=Dame|publisher=Universität Heidelberg|url=https://www.sai.uni-heidelberg.de/geo/pdfs/Nuesser_Dame_2015_Ojos%20del%20Salado_HGG-Journal.pdf|year=2015|language=de}}
  • {{cite report|last1=Rubiolo|first1=Daniel|last2=Pereyra|first2=Fernando Xavier|last3=Martínez|first3=Liliana del Valle|last4=Seggiaro|first4=Raúl E.|last5=Hongn|first5=Fernando D.|last6=Fernández Seveso|first6=Fernando|last7=Velasco|first7=María S.|last8=Sruoga|first8=Patricia|last9=Prieri|first9=Ana|last10=González Díaz|first10=Emilio F.|year=2003|title=Fiambalá 2769-IV, Provincias de Catamarca y La Rioja|publisher=Servicio Geológico Minero Argentino. Boletín N° 421|location=Buenos Aires|issn=0328-2333|url=http://repositorio.segemar.gov.ar/308849217/1811|format=PDF|language=es}}
  • {{Citation|last1=Kay|first1=Suzanne Mahlburg|title=Field trip guide: Neogene evolution of the central Andean Puna plateau and southern Central Volcanic Zone|date=2008|url=https://pubs.geoscienceworld.org/books/book/900/chapter/4636760/|work=GSA Field Guide 13: Field Trip Guides to the Backbone of the Americas in the Southern and Central Andes: Ridge Collision, Shallow Subduction, and Plateau Uplift|volume=13|pages=117–181|publisher=Geological Society of America|language=en|doi=10.1130/2008.0013(05)|isbn=978-0-8137-0013-7|access-date=2021-08-03|last2=Coira|first2=Beatriz|last3=Mpodozis|first3=Constantino}}

{{refend}}