Neville theta functions

{{for|other θ functions|Theta function (disambiguation)}}

In mathematics, the Neville theta functions, named after Eric Harold Neville,Abramowitz and Stegun, pp. 578-579 are defined as follows:Neville (1944)[http://functions.wolfram.com/EllipticFunctions/NevilleThetaC/02/ The Mathematical Functions Site]

[http://functions.wolfram.com/EllipticFunctions/NevilleThetaD/02/ The Mathematical Functions Site]

: \theta_c(z,m)=\frac {\sqrt{2\pi}\,q(m)^{1/4}}{m^{1/4}\sqrt {K(m)}}\,\, \sum _{k=0}^\infty (q(m))^{k(k+1)} \cos \left(\frac{( 2k+1) \pi z}{2 K(m)} \right)

: \theta_d(z,m)=\frac{\sqrt{2\pi}}{2\sqrt{K(m)}}\,\,\left( 1+2\,\sum _{k=1}^\infty (q(m))^{k^2} \cos \left( \frac {\pi zk}{K(m)} \right) \right)

: \theta_n(z, m) =\frac {\sqrt {2\pi }}{2(1-m)^{1/4}\sqrt {K(m)}}\,\,\left( 1+2\sum _{k=1}^\infty (-1)^k (q(m))^{k^2} \cos \left(\frac{\pi zk}{K(m)} \right) \right)

: \theta_s(z, m)=\frac{\sqrt {2\pi}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}\sqrt{K(m)}}\,\, \sum_{k=0}^\infty (-1)^k (q(m))^{k(k+1) } \sin\left(\frac { (2k+1) \pi z}{2K(m)} \right)

where: K(m) is the complete elliptic integral of the first kind, K'(m)=K(1-m), and q(m)=e^{-\pi K'(m)/K(m)} is the elliptic nome.

Note that the functions θp(z,m) are sometimes defined in terms of the nome q(m) and written θp(z,q) (e.g. NIST). The functions may also be written in terms of the τ parameter θp(z|τ) where q=e^{i\pi\tau}.

Relationship to other functions

The Neville theta functions may be expressed in terms of the Jacobi theta functions{{cite web|url=http://dlmf.nist.gov/20|title=NIST Digital Library of Mathematical Functions (Release 1.0.17)|editor-last=Olver|editor-first=F. W. J. |display-editors=etal |date=2017-12-22|publisher=National Institute of Standards and Technology|access-date=2018-02-26 }}

:\theta_s(z|\tau)=\theta_3^2(0|\tau)\theta_1(z'|\tau)/\theta'_1(0|\tau)

:\theta_c(z|\tau)=\theta_2(z'|\tau)/\theta_2(0|\tau)

:\theta_n(z|\tau)=\theta_4(z'|\tau)/\theta_4(0|\tau)

:\theta_d(z|\tau)=\theta_3(z'|\tau)/\theta_3(0|\tau)

where z'=z/\theta_3^2(0|\tau).

The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then

:\operatorname{pq}(u,m)=\frac{\theta_p(u,m)}{\theta_q(u,m)}.

Examples

  • \theta_c(2.5, 0.3)\approx -0.65900466676738154967
  • \theta_d(2.5, 0.3)\approx 0.95182196661267561994
  • \theta_n(2.5, 0.3)\approx 1.0526693354651613637
  • \theta_s(2.5, 0.3)\approx 0.82086879524530400536

Symmetry

  • \theta_c(z,m)=\theta_c(-z,m)
  • \theta_d(z,m)=\theta_d(-z,m)
  • \theta_n(z,m)=\theta_n(-z,m)
  • \theta_s(z,m)=-\theta_s(-z,m)

Complex 3D plots

Notes

{{reflist}}

References

  • {{AS ref}}
  • {{cite book

| last = Neville

| first = E. H. (Eric Harold)

| author-link =Eric Harold Neville

| title =Jacobian Elliptic Functions

| publisher =Oxford Clarendon Press

| date =1944

| url = https://archive.org/details/jacobianelliptic00neviuoft}}

  • {{MathWorld | urlname=NevilleThetaFunctions | title=Neville Theta Functions}}

Category:Special functions

Category:Theta functions

Category:Elliptic functions

Category:Analytic functions