Newton–Euler equations

{{Short description|Rigid body equations in classical mechanics}}

{{classical mechanics}}

In classical mechanics, the Newton–Euler equations describe the combined translational and rotational dynamics of a rigid body.

{{cite book

|title=Rigid Body Dynamics of Mechanisms

|author=Hubert Hahn

|page=143

|url=https://books.google.com/books?id=MqrN3KY7o6MC&pg=PA143

|isbn=3-540-42373-7

|publisher=Springer

|year=2002

}}

{{cite book

|title=Computational Dynamics

|author=Ahmed A. Shabana

|page= 379

|url=https://books.google.com/books?id=dGfcbOsm2PwC&pg=PA379

|isbn=978-0-471-37144-1

|year=2001

|publisher=Wiley-Interscience

}}

{{cite book

|title=Robot Analysis and Control

|author=Haruhiko Asada, Jean-Jacques E. Slotine

|url=https://books.google.com/books?id=KUG1VGkL3loC&q=EUler+equations+%22rigid+body%22&pg=PA94

|isbn=0-471-83029-1

|publisher=Wiley/IEEE

|year=1986

|pages=§5.1.1, p. 94

}}

{{cite book

|title=Mechatronic Systems, Sensors, and Actuators: Fundamentals and Modeling

|author= Robert H. Bishop

|url=https://books.google.com/books?id=3UGQsi6VamwC&q=EUler+equations+%22rigid+body%22&pg=PT104

|isbn=978-0-8493-9258-0

|publisher=CRC Press

|year=2007

|pages=§7.4.1, §7.4.2

}}

{{cite book

|title=High Fidelity Haptic Rendering

|author= Miguel A. Otaduy, Ming C. Lin

|page=24 |url=https://books.google.com/books?id=lk0StvDRoEMC&q=EUler+equations+%22rigid+body%22&pg=PA24

|isbn=1-59829-114-9

|publisher=Morgan and Claypool Publishers

|year=2006

}}

Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

Center of mass frame

With respect to a coordinate frame whose origin coincides with the body's center of mass for τ(torque) and an inertial frame of reference for F(force), they can be expressed in matrix form as:

:

\left(\begin{matrix} {\mathbf F} \\ {\boldsymbol \tau} \end{matrix}\right) =

\left(\begin{matrix} m {\mathbf I_3} & 0 \\ 0 & {\mathbf I}_{\rm cm} \end{matrix}\right)

\left(\begin{matrix} \mathbf a_{\rm cm} \\ {\boldsymbol \alpha} \end{matrix}\right) +

\left(\begin{matrix} 0 \\ {\boldsymbol \omega} \times {\mathbf I}_{\rm cm} \, {\boldsymbol \omega} \end{matrix}\right),

where

:F = total force acting on the center of mass

:m = mass of the body

:I3 = the 3×3 identity matrix

:acm = acceleration of the center of mass

:vcm = velocity of the center of mass

:τ = total torque acting about the center of mass

:Icm = moment of inertia about the center of mass

:ω = angular velocity of the body

:α = angular acceleration of the body

Any reference frame

With respect to a coordinate frame located at point P that is fixed in the body and not coincident with the center of mass, the equations assume the more complex form:

:

\left(\begin{matrix} {\mathbf F} \\ {\boldsymbol \tau}_{\rm p} \end{matrix}\right) =

\left(\begin{matrix} m {\mathbf I_3} & -m [{\mathbf c}]^{\times}\\

m [{\mathbf c}]^{\times} & {\mathbf I}_{\rm cm} - m[{\mathbf c}]^{\times}[{\mathbf c}]^{\times}\end{matrix}\right)

\left(\begin{matrix} \mathbf a_{\rm p} \\ {\boldsymbol \alpha} \end{matrix}\right) +

\left(\begin{matrix} m[{\boldsymbol \omega}]^{\times}[{\boldsymbol \omega}]^{\times} {\mathbf c} \\

{[\boldsymbol \omega]}^\times ({\mathbf I}_{\rm cm} - m [{\mathbf c}]^\times[{\mathbf c}]^\times)\, {\boldsymbol \omega} \end{matrix}\right),

where c is the vector from P to the center of mass of the body expressed in the body-fixed frame,

and

:

[\mathbf{c}]^{\times} \equiv

\left(\begin{matrix} 0 & -c_z & c_y \\ c_z & 0 & -c_x \\ -c_y & c_x & 0 \end{matrix}\right)

\qquad \qquad

[\mathbf{\boldsymbol{\omega}}]^{\times} \equiv

\left(\begin{matrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{matrix}\right)

denote skew-symmetric cross product matrices.

The left hand side of the equation—which includes the sum of external forces, and the sum of external moments about P—describes a spatial wrench, see screw theory.

The inertial terms are contained in the spatial inertia matrix

:

\left(\begin{matrix} m {\mathbf I_3} & - m [{\mathbf c}]^{\times}\\

m [{\mathbf c}]^{\times} & {\mathbf I}_{\rm cm} - m [{\mathbf c}]^{\times}[{\mathbf c}]^{\times}\end{matrix}\right),

while the fictitious forces are contained in the term:

{{cite book

|title=Rigid Body Dynamics Algorithms

|author= Roy Featherstone

|url=https://books.google.com/books?id=UjWbvqWaf6gC&q=Rigid+Body+Dynamics+Algorithms

|isbn=978-0-387-74314-1

|publisher=Springer

|year=2008

}}

:

\left(\begin{matrix} m{[\boldsymbol \omega]}^\times {[\boldsymbol \omega]}^\times {\mathbf c} \\

{[\boldsymbol \omega]}^\times ({\mathbf I}_{\rm cm} - m [{\mathbf c}]^\times[{\mathbf c}]^\times)\, {\boldsymbol \omega} \end{matrix}\right) .

When the center of mass is not coincident with the coordinate frame (that is, when c is nonzero), the translational and angular accelerations (a and α) are coupled, so that each is associated with force and torque components.

Applications

The Newton–Euler equations are used as the basis for more complicated "multi-body" formulations (screw theory) that describe the dynamics of systems of rigid bodies connected by joints and other constraints. Multi-body problems can be

solved by a variety of numerical algorithms.

{{cite book

|title=Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach

|author= Constantinos A. Balafoutis, Rajnikant V. Patel

|page=Chapter 5

|url=https://books.google.com/books?id=7BcpyUjmLpUC&q=%22Kane%27s+dynamical+equations%22&pg=PT195

|isbn=0-7923-9145-4

|publisher=Springer

|year=1991

|no-pp=true

}}

See also

References

{{Isaac Newton}}

{{DEFAULTSORT:Newton-Euler equations}}

Category:Rigid bodies

Category:Equations