Nice subgroup

{{Orphan|date=March 2017}}

In algebra, a nice subgroup H of an abelian p-group G is a subgroup such that pα(G/H) = 〈pαG,H〉/H for all ordinals α. Nice subgroups were introduced by {{harvs|txt||last=Hill||year=1967}}. Knice subgroups are a modification of this introduced by {{harvtxt|Hill|Megibben|1986}}.

References

  • {{Citation | last1=Griffith | first1=Phillip A. | title=Infinite abelian group theory | publisher=The University of Chicago Press, Chicago, Ill.-London | isbn=978-0-226-30870-8 |mr=0289638 | year=1970}}
  • {{Citation | last1=Hill | first1=Paul | title=On the classification of abelian groups | series=Xeroxed manuscript | year=1967}}
  • {{Citation | last2=Megibben | first2=Charles | last1=Hill | first1=Paul | title=Axiom 3 modules | doi=10.2307/2000060 |mr=833705 | year=1986 | journal=Transactions of the American Mathematical Society | issn=0002-9947 | volume=295 | issue=2 | pages=715–734| jstor=2000060 }}

Category:Properties of groups