Nitridophosphate
{{Short description|Class of inorganic chemical compounds}}
A nitridophosphate is an inorganic compound that contains nitrogen bound to a phosphorus atom, considered as replacing oxygen in a phosphate.
Anions include NPN PN3 P3N6. Related compounds include the oxonitridophosphates{{cite journal |last1=Pritzl |first1=Reinhard M. |last2=Prinz |first2=Nina |last3=Strobel |first3=Philipp |last4=Schmidt |first4=Peter J. |last5=Johrendt |first5=Dirk |last6=Schnick |first6=Wolfgang |title=From Framework to Layers Driven by Pressure – The Monophyllo-Oxonitridophosphate β-MgSrP 3 N 5 O 2 and Comparison to its α-Polymorph |journal=Chemistry – A European Journal |date=20 July 2023 |volume=29 |issue=41 |doi=10.1002/chem.202301218|doi-access=free }} imidonitridophosphates,{{Cite journal |last1=Vogel |first1=Sebastian |last2=Schnick |first2=Wolfgang |date=2018-09-20 |title=SrP 3 N 5 NH: A Framework-Type Imidonitridophosphate Featuring Structure-Directing Hydrogen Bonds |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201803210 |journal=Chemistry – A European Journal |language=en |volume=24 |issue=53 |pages=14275–14281 |doi=10.1002/chem.201803210 |pmid=30004596 |s2cid=51616212 |issn=0947-6539|url-access=subscription }} nitridoborophosphates,{{cite journal |last1=Bertschler |first1=Eva-Maria |last2=Bräuniger |first2=Thomas |last3=Dietrich |first3=Christian |last4=Janek |first4=Jürgen |last5=Schnick |first5=Wolfgang |title=Li 47 B 3 P 14 N 42 —A Lithium Nitridoborophosphate with [P 3 N 9 ] 12− , [P 4 N 10 ] 10− , and the Unprecedented [B 3 P 3 N 13 ] 15− Ion |journal=Angewandte Chemie International Edition |date=18 April 2017 |volume=56 |issue=17 |pages=4806–4809 |doi=10.1002/anie.201701084|pmid=28370871 }} and nitridosilicatephosphates.{{Cite journal |last1=Eisenburger |first1=Lucien |last2=Oeckler |first2=Oliver |last3=Schnick |first3=Wolfgang |date=March 2021 |title=High-Pressure High-Temperature Synthesis of Mixed Nitridosilicatephosphates and Luminescence of AE SiP 3 N 7 :Eu 2+ ( AE =Sr, Ba) |journal=Chemistry – A European Journal |language=en |volume=27 |issue=13 |pages=4461–4465 |doi=10.1002/chem.202005495 |issn=0947-6539 |pmc=7986791 |pmid=33464635}} By changing the phosphorus, related materials include nitridovanadates and nitridorhenates.{{Cite journal |last1=Chaushli |first1=Azad |last2=Jacobs |first2=Herbert |last3=Weisser |first3=Ulrike |last4=Strähle |first4=Joachim |date=September 2000 |title=Li5ReN4, ein Lithium–Nitridorhenat(VII) mit anti-Flußspat-Überstruktur |url=https://onlinelibrary.wiley.com/doi/10.1002/1521-3749(200009)626:93.0.CO;2-T |journal=Zeitschrift für anorganische und allgemeine Chemie |volume=626 |issue=9 |pages=1909–1914 |doi=10.1002/1521-3749(200009)626:9<1909::AID-ZAAC1909>3.0.CO;2-T|url-access=subscription }}
Nitridophosphate compounds include elements from the alkali metals, alkaline earths, first row transition metals, rare earth elements, and some other main group elements.{{cite journal |last1=Kloß |first1=Simon D. |last2=Schnick |first2=Wolfgang |title=Nitridophosphates: A Success Story of Nitride Synthesis |journal=Angewandte Chemie International Edition |date=11 June 2019 |volume=58 |issue=24 |pages=7933–7944 |doi=10.1002/anie.201812791}}
Characteristics
Nitridophosphate compounds nearly always contain phosphorus in tetrahedral configuration. They can be characterised by the condensation index K which is the ratio of numbers of phosphorus tetrahedral centres to nitrogen vertices. As more nitrogen atoms are shared between phosphorus, condensation increases. The maximum is for P3N5 which no longer has any capacity for cations. For K of 1/2 three dimensional frameworks are produced. For 2/7 or 3/7 layered arrangements of tetrahedra are produced. For 1/3 chains or ring structures are prominent. 1/4 is for uncondensed PN4 compounds. Tow PN4 tetrahedra can also share an edge: P2N6, as the P-N bond is not very polarised, so there is less electrostatic repulsion. Uncondensed compounds are sensitive to air and water but highly condensed compounds are water or acid stable.
Nitridophosphate compounds are usually insulators and are transparent to light.
Formation
Heating P3N5 with a metal nitride at gigapascal pressure and a temperatures of over 1000 °C forms nitridophosphates. P3N5 decomposes over 850°C at ambient pressure. However there are a few nitridophosphates that do no require such high temperatures to form.{{Cite journal |last1=Bertschler |first1=Eva-Maria |last2=Dietrich |first2=Christian |last3=Leichtweiß |first3=Thomas |last4=Janek |first4=Jürgen |last5=Schnick |first5=Wolfgang |date=2018-01-02 |title=Li + Ion Conductors with Adamantane-Type Nitridophosphate Anions β-Li 10 P 4 N 10 and Li 13 P 4 N 10 X 3 with X =Cl, Br |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201704305 |journal=Chemistry – A European Journal |language=en |volume=24 |issue=1 |pages=196–205 |doi=10.1002/chem.201704305 |pmid=29027753 |issn=0947-6539|url-access=subscription }}{{cite journal |last1=Wendl |first1=Sebastian |last2=Mardazad |first2=Sara |last3=Strobel |first3=Philipp |last4=Schmidt |first4=Peter J. |last5=Schnick |first5=Wolfgang |title=HIP to be Square: Simplifying Nitridophosphate Synthesis in a Hot Isostatic Press |journal=Angewandte Chemie |date=5 October 2020 |volume=132 |issue=41 |pages=18397–18400 |doi=10.1002/ange.202008570|bibcode=2020AngCh.13218397W |pmc=7590079 }}
Heating ammonia under pressure with red phosphorus, and metals, metal nitrides or metal azides is a method called ammonothermal synthesis.{{cite journal |last1=Mallmann |first1=Mathias |last2=Wendl |first2=Sebastian |last3=Schnick |first3=Wolfgang |title=Crystalline Nitridophosphates by Ammonothermal Synthesis |journal=Chemistry – A European Journal |date=11 February 2020 |volume=26 |issue=9 |pages=2067–2072 |doi=10.1002/chem.201905227|pmid=31909508 |pmc=7027869 }}
Use
List
class="wikitable"
!formula !system !space group !unit cell !volume !density !comment !reference |
HPN2
|tetragonal |I{{overbar|4}}2d |a = 4.6182 c = 7.0204 Z = 4 | | | |{{Cite journal |last1=Wendl |first1=Sebastian |last2=Schnick |first2=Wolfgang |date=2018-10-22 |title=SrH 4 P 6 N 12 and SrP 8 N 14 : Insights into the Condensation Mechanism of Nitridophosphates under High Pressure |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201803125 |journal=Chemistry – A European Journal |language=en |volume=24 |issue=59 |pages=15889–15896 |doi=10.1002/chem.201803125 |pmid=30136742 |s2cid=52066954 |issn=0947-6539|url-access=subscription }}{{Cite journal |last1=Schnick |first1=W. |last2=Lücke |first2=J. |date=April 1992 |title=Darstellung, Kristallstruktur und IR-spektroskopische Untersuchung von Phosphor(V)-nitrid-imid, HPN 2 |url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.19926100120 |journal=Zeitschrift für anorganische und allgemeine Chemie |language=en |volume=610 |issue=4 |pages=121–126 |doi=10.1002/zaac.19926100120 |issn=0044-2313}} |
HPN3
| | | | | | |
β-HP4N7
|monoclinic |C2/c |a = 12.873 b = 4.6587 c = 8.3222 β = 102.351° Z = 4 |487.55 |3.037 |colourless |
γ-HP4N7
|monoclinic |C2/c |a=6.82983 b=7.24537 c=8.96504 β = 111.5557° Z = 4 |412.604 |3.572 |high pressure form > 12 GPa; P in trigonal bipyramid |
LiPN2
| | | | | | |
Li7PN4
|cubic |P43n |a=9.3648 Z=8 | | |tetrahedra |{{Cite journal |last1=Schnick |first1=Wolfgang |last2=Luecke |first2=Jan |date=July 1990 |title=Synthesis and crystal structure of lithium phosphorus nitride Li7PN4: The first compound containing isolated PN4-tetrahedra |url=https://linkinghub.elsevier.com/retrieve/pii/002245969090070E |journal=Journal of Solid State Chemistry |language=en |volume=87 |issue=1 |pages=101–106 |doi=10.1016/0022-4596(90)90070-E}} |
β-Li10P4N10
|trigonal | |a=8.71929 c=21.4656 Z=6 |1413.3 |2.35015 |colourless; tetrahedron of 4 tetrahedra |
α-Li10P4N10
|cubic | | | | |>80°C |
Li5P2N5
|monoclinic |C2/c |a=14.770 b=17.850 c=4.860 β =93.11° | | |layered, high pressure |
Li4PN3
|orthorhombic |Pccn |a=9.6597 b=11.8392 c=4.8674 | | |chains |
Li12P3N9
|monoclinic |Cc |a=12.094 b=7.649 c=9.711 β=90.53° | | |ring of 3 tetrahedra |
Li18P6N16
|monoclinic |P{{overbar|1}} |a=5.4263 b=7.5354 c=9.8584 α=108.481° β=99.288° γ=104.996° Z=1 |355.8 |2.496 |tricyclic |
Li13P4N10Cl3
|cubic |Fm{{overbar|3}}m |a=13.Z=8 Z=8 |2704.27 |2.2624 |colourless; |
Li13P4N10Br3
|cubic |Fm{{overbar|3}}m |a=14.1096 Z=8 |2809.0 |2.8088 |colourless; |
LiP4N7
|orthorhombic |P212121 |a=4.5846 b=8.009 c=13.252 Z=4 |485.8 |3.130 |air stable; grey |
Li1.34P6N9.34(NH)1.66
|monoclinic |P{{overbar|1}} |a=4.691 b=7.024 c=12.736, α=87.73° β=80.28° γ=70.55° Z=2 |390.0 |2.988 |air stable; grey |
BeP2N4
|cubic |Fd{{overbar|3}} |a=7.1948 Z=8 |372.44 | |bulk modulus 325 GPa |
BP3N6
|monoclinic |P21/c |a=5.027 b=4.5306 c=17.332 β=106.387° Z=4 |378.7 |3.293 | |
Li47B3P14N42
|trigonal |P3c1 |a=19.3036 c=18.0200 | | | |
NaPN2
| | | | | | |
NaP4N7
| | | | | | |
Na3P6N11
| | | | | | |
Mg2PN3
|orthorhombic |Cmc21 |a=9.723 b=5.6562 c=4.7083 | | |band gap 5.0 eV |{{Cite journal |last1=Mallmann |first1=Mathias |last2=Maak |first2=Christian |last3=Niklaus |first3=Robin |last4=Schnick |first4=Wolfgang |date=2018-09-18 |title=Ammonothermal Synthesis, Optical Properties, and DFT Calculations of Mg 2 PN 3 and Zn 2 PN 3 |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201803293 |journal=Chemistry – A European Journal |language=en |volume=24 |issue=52 |pages=13963–13970 |doi=10.1002/chem.201803293 |pmid=30044518 |s2cid=51715277 |issn=0947-6539|url-access=subscription }} |
MgP8N14
|orthorhombic | |a=8.364 b=5.0214 c=23.196 |974.3 |3.192 | |
AlP6N11
|monoclinic |Cm |a=4.935 b=8.161 c=9.040 β=98.63° | | |grey; layered; thermal expansion 16.0 ppm/K |
Ca2PN3
|orthorhombic |Cmca |a = 5.1914 b =10.3160 c = 11.289 Z = 8 | | |beige; chains |
CaP8N14
| | | | | | |
Sc5P12N23O3
|tetragonal |I41/acd |a=12.3598 c=24.0151 Z=8 |3668.6 |3.500 |grey |
TiP4N8
|orthorhombic |Pmn21 |a=7.6065 b=4.6332 c=7.8601 Z=2 |227.01 |3.403 | |
TiP4N8
|orthorhombic |Pmn21 |a=22.9196 b=4.5880 c=8.0970 Z=6 |851.44 |3.322 | |
Ti5P12N24O2
|tetragonal |I41/acd |a=a=12.1214 c=23.8458 Z=8 |3503.6 |3.713 |black; Ti3+ & Ti4+ |
MnP2N4
|hexagonal |P6322 |a = 16.5543 c = 7.5058 |1781.3 | | |{{Cite journal |last1=Pucher |first1=Florian J. |last2=Karau |first2=Friedrich W. |last3=Schmedt auf der Günne |first3=Jörn |last4=Schnick |first4=Wolfgang |date=April 2016 |title=CdP 2 N 4 and MnP 2 N 4 – Ternary Transition-Metal Nitridophosphates |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejic.201600042 |journal=European Journal of Inorganic Chemistry |language=en |volume=2016 |issue=10 |pages=1497–1502 |doi=10.1002/ejic.201600042 |issn=1434-1948}} |
FeP8N14
|orthorhombic |Cmca |a=8.2693 = 5.10147 c=23.0776 | | |air stable |
CoP8N14
|orthorhombic |Cmca |a=8.25183 b=5.10337 c=22.9675 | | |air stable |
NiP8N14
|orthorhombic |Cmca |a=8.23105 b=5.08252 c=22.8516 | | |air stable |
CuPN2
|tetragonal |I{{overbar|4}}2d |a = 4.5029 c = 7.6157 |154.42 | |band gap 1.67 eV |
Zn2PN3
|orthorhombic |Cmc21 |a = 9.37847 b = 5.47696 c = 4.92396 Z = 4 | | |colourless |{{Cite journal |last1=Ambach |first1=Sebastian J. |last2=Pritzl |first2=Reinhard M. |last3=Bhat |first3=Shrikant |last4=Farla |first4=Robert |last5=Schnick |first5=Wolfgang |date=2024-02-07 |title=Nitride Synthesis under High-Pressure, High-Temperature Conditions: Unprecedented In Situ Insight into the Reaction |url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c04433 |journal=Inorganic Chemistry |volume=63 |issue=7 |pages=3535–3543 |language=en |doi=10.1021/acs.inorgchem.3c04433 |pmid=38324917 |s2cid=267545137 |issn=0020-1669|url-access=subscription }}{{Cite journal |last1=Sedlmaier |first1=Stefan J. |last2=Eberspächer |first2=Moritz |last3=Schnick |first3=Wolfgang |date=March 2011 |title=High-Pressure Synthesis, Crystal Structure, and Characterization of Zn 2 PN 3 – A New catena -Polynitridophosphate |url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.201000403 |journal=Zeitschrift für anorganische und allgemeine Chemie |language=en |volume=637 |issue=3–4 |pages=362–367 |doi=10.1002/zaac.201000403 |issn=0044-2313|url-access=subscription }} |
Zn8P12N24O2
|tetragonal |I{{overbar|4}}3m |a=8.24239 c=8.24239 | | | |
Zn8P12N24S2
| | | | | | |
Zn8P12N24Se2
| | | | | | |
Zn8P12N24Te2
| | | | | | |
Zn7P12N24Cl2
| | | | | |sodalite structure |
GeP2N4
|orthorhombic |Pna21 |a=9.547 b=7.542 c=4.6941 Z=4 | | |dark grey |
Sr3P3N7
|monoclinic |P2/c |a=6.882 b=7.416 c=7.036 β=104.96° Z=2 |346.9 |4.345 |white; decompose in moist air; band gap 4.4 eV |
Sr2SiP2N6
|orthorhombic |C2221 |a = 6.0849 b = 8.8203 c = 10.2500 | | | |
SrP8N14
| | | | | | |
SrP3N5NH
|monoclinic |P21/c |a=5.01774 b=8.16912 c=12.70193 β=101.7848° Z=4 | | | |
SrH4P6N12
| | | | | | |
Sr5Si2P6N16
|orthorhombic |Pbam |a = 9.9136 b = 17.5676 c = 8.3968 | | | |
SrAl5P4N10O2F3
|tetragonal |I{{overbar|4}}m2 |a=11.1685 c=7.8485 Z=2 |978.99 |3.905 | |
Sr3P5N10Cl
|orthorhombic |Pnma |a=12.240 b=12.953 c=13.427 Z=8 | | | |
Sr3P5N10Br
|orthorhombic |Pnma |a=12.297 b=12.990 c=13.458 Z=8 | | | |
AgPN2
| | | | | | |
CdP2N4
|hexagonal |P6322 |a = 16.7197 c = 7.6428 |1850.3 | | |
InP6N11
| | | | | |grey; layered |
BaP2N4
| | | | | | |
Ba3P5N10Cl
|orthorhombic |Pnma | | | | |
Ba3P5N10Br
|orthorhombic |Pnma | | | | |
BaSr2P6N12
|cubic |Pa{{overbar|3}} |a=10.0639 Z=4 |1019.3 |4.343 | |
La2P3N7
|monoclinic |C2/c | | | | |{{Cite journal |last1=Kloß |first1=Simon D. |last2=Weidmann |first2=Niels |last3=Niklaus |first3=Robin |last4=Schnick |first4=Wolfgang |date=2016-09-19 |title=High-Pressure Synthesis of Melilite-type Rare-Earth Nitridophosphates RE 2 P 3 N 7 and a Ba 2 Cu[Si 2 O 7 ]-type Polymorph |url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.6b01611 |journal=Inorganic Chemistry |language=en |volume=55 |issue=18 |pages=9400–9409 |doi=10.1021/acs.inorgchem.6b01611 |pmid=27579899 |issn=0020-1669|url-access=subscription }} |
Ce2P3N7
|monoclinic |C2/c | | | | |
Ce4Li3P18N35
|hexagonal |P63/m |a=13.9318 c=8.1355 | | | |
Pr2P3N7
|monoclinic |C2/c |a = 7.8006 b = 10.2221 c = 7.7798 β = 111.299° Z = 4 | | | |
Nd2P3N7
| |P{{overbar|4}}21m | | | | |
LiNdP4N8
|orthorhombic |Pnma |a=8.7305 b=7.8783 c=9.0881 | | | |
Sm2P3N7
| |P{{overbar|4}}21m | | | | |
Eu2P3N7
| |P{{overbar|4}}21m | | | | |
Ho2P3N7
| |P{{overbar|4}}21m |a = 7.3589 c = 4.9986 Z = 2 | | | |
Ho3[PN4]O
|tetragonal |I4/mcm |a = 6.36112 c = 10.5571 Z = 4 | | | |
Yb2P3N7
| |P{{overbar|4}}21m | | | | |
Hf9−xP24N52−4xO4x (x≈1.84)
| |I41/acd |a=12.4443 c=23.7674 Z=4 |3680.6 | | |