Noncentral F-distribution
{{Short description|Probability distribution generalizing the F-distribution with a noncentrality parameter}}
{{DISPLAYTITLE:Noncentral F-distribution}}
In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a noncentral generalization of the (ordinary) F-distribution. It describes the distribution of the quotient (X/n1)/(Y/n2), where the numerator X has a noncentral chi-squared distribution with n1 degrees of freedom and the denominator Y has a central chi-squared distribution with n2 degrees of freedom. It is also required that X and Y are statistically independent of each other.
It is the distribution of the test statistic in analysis of variance problems when the null hypothesis is false. The noncentral F-distribution is used to find the power function of such a test.
Occurrence and specification
If is a noncentral chi-squared random variable with noncentrality parameter and degrees of freedom, and is a chi-squared random variable with degrees of freedom that is statistically independent of , then
:
F=\frac{X/\nu_1}{Y/\nu_2}
is a noncentral F-distributed random variable.
The probability density function (pdf) for the noncentral F-distribution is{{cite book |first=S. |last=Kay |title=Fundamentals of Statistical Signal Processing: Detection Theory |location=New Jersey |publisher=Prentice Hall |year=1998 |page=29 |isbn=0-13-504135-X }}
:
p(f)
=\sum\limits_{k=0}^\infty\frac{e^{-\lambda/2}(\lambda/2)^k}{ B\left(\frac{\nu_2}{2},\frac{\nu_1}{2}+k\right) k!}
\left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}+k}
\left(\frac{\nu_2}{\nu_2+\nu_1f}\right)^{\frac{\nu_1+\nu_2}{2}+k}f^{\nu_1/2-1+k}
when and zero otherwise.
The degrees of freedom and are positive.
The term is the beta function, where
:
B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.
The cumulative distribution function for the noncentral F-distribution is
:
F(x\mid d_1,d_2,\lambda)=\sum\limits_{j=0}^\infty\left(\frac{\left(\frac{1}{2}\lambda\right)^j}{j!}e^{-\lambda/2} \right)I\left(\frac{d_1x}{d_2 + d_1x}\bigg|\frac{d_1}{2}+j,\frac{d_2}{2}\right)
where is the regularized incomplete beta function.
The mean and variance of the noncentral F-distribution are
:
\operatorname{E}[F] \quad
\begin{cases}
= \frac{\nu_2(\nu_1+\lambda)}{\nu_1(\nu_2-2)} & \text{if } \nu_2>2\\
\text{does not exist} & \text{if } \nu_2\le2\\
\end{cases}
and
:
\operatorname{Var}[F] \quad
\begin{cases}
= 2\frac{(\nu_1+\lambda)^2+(\nu_1+2\lambda)(\nu_2-2)}{(\nu_2-2)^2(\nu_2-4)}\left(\frac{\nu_2}{\nu_1}\right)^2
& \text{if } \nu_2>4\\
\text{does not exist}
& \text{if } \nu_2\le4.\\
\end{cases}
Special cases
When λ = 0, the noncentral F-distribution becomes the
Related distributions
Z has a noncentral chi-squared distribution if
:
where F has a noncentral F-distribution.
See also noncentral t-distribution.
Implementations
The noncentral F-distribution is implemented in the R language (e.g., pf function), in MATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in Mathematica (NoncentralFRatioDistribution function), in NumPy (random.noncentral_f), and in Boost C++ Libraries.{{cite web |url=http://www.boost.org/doc/libs/1_39_0/libs/math/doc/sf_and_dist/html/math_toolkit/dist/dist_ref/dists/nc_f_dist.html |title=Noncentral F Distribution: Boost 1.39.0 |author=John Maddock |author2=Paul A. Bristow |author3=Hubert Holin |author4=Xiaogang Zhang |author5=Bruno Lalande |author6=Johan Råde |work=Boost.org |access-date=20 August 2011}}
A collaborative wiki page implements an interactive online calculator, programmed in the R language, for the noncentral t, chi-squared, and F distributions, at the Institute of Statistics and Econometrics of the Humboldt University of Berlin.{{cite web |url=http://mars.wiwi.hu-berlin.de/mediawiki/slides/index.php/Comparison_of_noncentral_and_central_distributions |title=Comparison of noncentral and central distributions |author=Sigbert Klinke |date=10 December 2008 |publisher=Humboldt-Universität zu Berlin}}
Notes
References
- {{cite web |url=http://mathworld.wolfram.com/NoncentralF-Distribution.html |title=Noncentral F-distribution |first=Eric W.|last=Weisstein |author-link=Eric W. Weisstein |work=MathWorld |publisher=Wolfram Research, Inc |access-date=20 August 2011|display-authors=etal}}
{{Probability distributions}}