Noncentral beta distribution
{{Probability distribution |
name =Noncentral Beta|
type = density|
notation = Beta(α, β, λ)|
parameters = α > 0 shape (real)
β > 0 shape (real)
λ ≥ 0 noncentrality (real)|
support =|
pdf = (type I) |
cdf = (type I) |
mean = (type I) (see Confluent hypergeometric function)|
variance = (type I) where is the mean. (see Confluent hypergeometric function)
}}
In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a noncentral generalization of the (central) beta distribution.
The noncentral beta distribution (Type I) is the distribution of the ratio
:
X = \frac{\chi^2_m(\lambda)}{\chi^2_m(\lambda) + \chi^2_n},
where is a [[Noncentral chi-squared distribution|
noncentral chi-squared]] random variable with degrees of freedom m and noncentrality parameter , and is a central chi-squared random variable with degrees of freedom n, independent of .{{cite journal
|first=R.
|last=Chattamvelli
|title=A Note on the Noncentral Beta Distribution Function
|journal=The American Statistician
|volume=49
|issue= 2
|year=1995
|pages= 231–234
|doi=10.1080/00031305.1995.10476151}}
In this case,
A Type II noncentral beta distribution is the distribution
of the ratio
:
where the noncentral chi-squared variable is in the denominator only. If follows
the type II distribution, then follows a type I distribution.
Cumulative distribution function
The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables:
:
F(x) = \sum_{j=0}^\infty P(j) I_x(\alpha+j,\beta),
where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and is the incomplete beta function. That is,
:
F(x) = \sum_{j=0}^\infty \frac{1}{j!}\left(\frac{\lambda}{2}\right)^je^{-\lambda/2}I_x(\alpha+j,\beta).
The Type II cumulative distribution function in mixture form is
:
F(x) = \sum_{j=0}^\infty P(j) I_x(\alpha,\beta+j).
Algorithms for evaluating the noncentral beta distribution functions are given by Posten{{cite journal|first=H.O.|last=Posten|title=An Effective Algorithm for the Noncentral Beta Distribution Function|journal=The American Statistician|year= 1993|volume= 47|issue= 2|pages=129–131|jstor=2685195|doi=10.1080/00031305.1993.10475957}} and Chattamvelli.
Probability density function
The (Type I) probability density function for the noncentral beta distribution is:
:
f(x) = \sum_{j=0}^\infin \frac{1}{j!}\left(\frac{\lambda}{2}\right)^je^{-\lambda/2}\frac{x^{\alpha+j-1}(1-x)^{\beta-1}}{B(\alpha+j,\beta)}.
where is the beta function, and are the shape parameters, and is the noncentrality parameter. The density of Y is the same as that of 1-X with the degrees of freedom reversed.
Related distributions
= Transformations =
If , then follows a noncentral F-distribution with degrees of freedom, and non-centrality parameter .
If follows a noncentral F-distribution with numerator degrees of freedom and denominator degrees of freedom, then
:
follows a noncentral Beta distribution:
:.
This is derived from making a straightforward transformation.
= Special cases =
When , the noncentral beta distribution is equivalent to the (central) beta distribution.
{{more footnotes|date=August 2011}}
References
= Citations =
{{Reflist}}
= Sources =
{{refbegin}}
- M. Abramowitz and I. Stegun, editors (1965) "Handbook of Mathematical Functions", Dover: New York, NY.
- {{cite journal |first = J.L. Jr |last=Hodges |title=On the noncentral beta-distribution |journal=Annals of Mathematical Statistics |year=1955 |volume=26 |issue=4 |pages=648–653 |doi=10.1214/aoms/1177728424 |doi-access=free }}
- {{cite journal |first = G.A.F. |last=Seber |title=The non-central chi-squared and beta distributions |journal=Biometrika |year=1963 |volume=50 |issue=3–4 |pages=542–544 |doi=10.1093/biomet/50.3-4.542 }}
- Christian Walck, "Hand-book on Statistical Distributions for experimentalists."
{{refend}}
{{-}}
{{ProbDistributions|continuous-bounded}}