Noncentral chi distribution

{{Refimprove|date=December 2012}}

{{Probability distribution|

name =Noncentral chi|

type =density|

pdf_image =|

cdf_image =|

parameters =k > 0\, degrees of freedom

\lambda > 0\,|

support =x \in [0; +\infty)\,|

pdf =\frac{e^{-(x^2+\lambda^2)/2}x^k\lambda}

{(\lambda x)^{k/2}} I_{k/2-1}(\lambda x)|

cdf =1 - Q_{\frac{k}{2}} \left( \lambda, x \right) with Marcum Q-function Q_M(a,b)

| mean =\sqrt{\frac{\pi}{2}}L_{1/2}^{(k/2-1)}\left(\frac{-\lambda^2}{2}\right)\,|

median =|

mode =|

variance =k+\lambda^2-\mu^2, where \mu is the mean |

skewness =|

kurtosis =|

entropy =|

mgf =|

char =

}}

In probability theory and statistics, the noncentral chi distribution{{cite journal|author=J. H. Park|title=Moments of the Generalized Rayleigh Distribution|journal=Quarterly of Applied Mathematics|volume=19|issue=1|year=1961|pages=45–49|doi=10.1090/qam/119222|jstor=43634840 |doi-access=free}} is a noncentral generalization of the chi distribution. It is also known as the generalized Rayleigh distribution.

Definition

If X_i are k independent, normally distributed random variables with means \mu_i and variances \sigma_i^2, then the statistic

:Z = \sqrt{\sum_{i=1}^k \left(\frac{X_i}{\sigma_i}\right)^2}

is distributed according to the noncentral chi distribution. The noncentral chi distribution has two parameters: k which specifies the number of degrees of freedom (i.e. the number of X_i), and \lambda which is related to the mean of the random variables X_i by:

:\lambda=\sqrt{\sum_{i=1}^k \left(\frac{\mu_i}{\sigma_i}\right)^2}

Properties

=Probability density function=

The probability density function (pdf) is

:f(x;k,\lambda)=\frac{e^{-(x^2+\lambda^2)/2}x^k\lambda}

{(\lambda x)^{k/2}} I_{k/2-1}(\lambda x)

where I_\nu(z) is a modified Bessel function of the first kind.

=Raw moments=

The first few raw moments are:

:\mu^'_1=\sqrt{\frac{\pi}{2}}L_{1/2}^{(k/2-1)}\left(\frac{-\lambda^2}{2}\right)

:\mu^'_2=k+\lambda^2

:\mu^'_3=3\sqrt{\frac{\pi}{2}}L_{3/2}^{(k/2-1)}\left(\frac{-\lambda^2}{2}\right)

:\mu^'_4=(k+\lambda^2)^2+2(k+2\lambda^2)

where L_n^{(a)}(z) is a Laguerre function. Note that the 2nth moment is the same as the nth moment of the noncentral chi-squared distribution with \lambda being replaced by \lambda^2.

Bivariate non-central chi distribution

Let X_j = (X_{1j}, X_{2j}), j = 1, 2, \dots n, be a set of n independent and identically distributed bivariate normal random vectors with marginal distributions N(\mu_i,\sigma_i^2), i=1,2, correlation \rho, and mean vector and covariance matrix

: E(X_j)= \mu=(\mu_1, \mu_2)^T, \qquad

\Sigma =

\begin{bmatrix}

\sigma_{11} & \sigma_{12} \\

\sigma_{21} & \sigma_{22}

\end{bmatrix}

= \begin{bmatrix}

\sigma_1^2 & \rho \sigma_1 \sigma_2 \\

\rho \sigma_1 \sigma_2 & \sigma_2^2

\end{bmatrix},

with \Sigma positive definite. Define

:

U = \left[ \sum_{j=1}^n \frac{X_{1j}^2}{\sigma_1^2} \right]^{1/2}, \qquad

V = \left[ \sum_{j=1}^n \frac{X_{2j}^2}{\sigma_2^2} \right]^{1/2}.

Then the joint distribution of U, V is central or noncentral bivariate chi distribution with n degrees of freedom.{{cite journal|author=Marakatha Krishnan|title= The Noncentral Bivariate Chi Distribution|journal= SIAM Review |volume=9|issue=4|year=1967|pages=708–714|doi=10.1137/1009111|bibcode= 1967SIAMR...9..708K}}{{cite journal|author=P. R. Krishnaiah, P. Hagis, Jr. and L. Steinberg |title= A note on the bivariate chi distribution|journal=SIAM Review|volume= 5|year=1963|issue= 2|pages= 140–144|jstor=2027477|doi=10.1137/1005034|bibcode= 1963SIAMR...5..140K}}

If either or both \mu_1 \neq 0 or \mu_2 \neq 0 the distribution is a noncentral bivariate chi distribution.

Related distributions

  • If X is a random variable with the non-central chi distribution, the random variable X^2 will have the noncentral chi-squared distribution. Other related distributions may be seen there.
  • If X is chi distributed: X \sim \chi_k then X is also non-central chi distributed: X \sim NC\chi_k(0). In other words, the chi distribution is a special case of the non-central chi distribution (i.e., with a non-centrality parameter of zero).
  • A noncentral chi distribution with 2 degrees of freedom is equivalent to a Rice distribution with \sigma=1.
  • If X follows a noncentral chi distribution with 1 degree of freedom and noncentrality parameter λ, then σX follows a folded normal distribution whose parameters are equal to σλ and σ2 for any value of σ.

References

{{Reflist}}

{{ProbDistributions|continuous-semi-infinite}}

{{DEFAULTSORT:Noncentral Chi Distribution}}

Category:Continuous distributions

Category:Noncentral distributions