Normal-inverse-gamma distribution

{{Short description|Family of multivariate continuous probability distributions}}

{{Probability distribution |

name =normal-inverse-gamma|

type =density|

pdf_image =File:Normal-inverse-gamma.svg|

cdf_image =|

parameters =\mu\, location (real)
\lambda > 0\, (real)
\alpha > 0\, (real)
\beta > 0\, (real)|

support =x \in (-\infty, \infty)\,\!, \; \sigma^2 \in (0,\infty)|

pdf =

\frac{ \sqrt{ \lambda } }{ \sqrt{ 2 \pi \sigma^2 }}

\frac{ \beta^\alpha }{ \Gamma( \alpha ) }

\left( \frac{1}{\sigma^2 } \right)^{\alpha + 1}

\exp \left( -\frac { 2\beta + \lambda (x - \mu)^2} {2\sigma^2}\right)

|

cdf =|

mean =\operatorname{E}[x] = \mu

\operatorname{E}[\sigma^2] = \frac{\beta}{\alpha - 1}, for \alpha >1|

median =|

mode = x = \mu \; \textrm{(univariate)}, x = \boldsymbol{\mu} \; \textrm{(multivariate)}

\sigma^2 = \frac{\beta}{\alpha + 1 + 1/2} \; \textrm{(univariate)}, \sigma^2 = \frac{\beta}{\alpha + 1 + k/2} \; \textrm{(multivariate)} |

variance =\operatorname{Var}[x] = \frac{\beta}{(\alpha -1)\lambda}, for \alpha > 1

\operatorname{Var}[\sigma^2] = \frac{\beta^2}{(\alpha -1)^2(\alpha -2)}, for \alpha > 2

\operatorname{Cov}[x, \sigma^2] = 0, for \alpha > 1|

skewness =|

kurtosis =|

entropy =|

mgf =|

char =|

}}

In probability theory and statistics, the normal-inverse-gamma distribution (or Gaussian-inverse-gamma distribution) is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

Definition

Suppose

: x \mid \sigma^2, \mu, \lambda\sim \mathrm{N}(\mu,\sigma^2 / \lambda) \,\!

has a normal distribution with mean \mu and variance \sigma^2 / \lambda, where

:\sigma^2\mid\alpha, \beta \sim \Gamma^{-1}(\alpha,\beta) \!

has an inverse-gamma distribution. Then (x,\sigma^2)

has a normal-inverse-gamma distribution, denoted as

: (x,\sigma^2) \sim \text{N-}\Gamma^{-1}(\mu,\lambda,\alpha,\beta) \! .

(\text{NIG} is also used instead of \text{N-}\Gamma^{-1}.)

The normal-inverse-Wishart distribution is a generalization of the normal-inverse-gamma distribution that is defined over multivariate random variables.

Characterization

=Probability density function=

: f(x,\sigma^2\mid\mu,\lambda,\alpha,\beta) = \frac {\sqrt{\lambda}} {\sigma\sqrt{2\pi} } \, \frac{\beta^\alpha}{\Gamma(\alpha)} \, \left( \frac{1}{\sigma^2} \right)^{\alpha + 1} \exp \left( -\frac { 2\beta + \lambda(x - \mu)^2} {2\sigma^2} \right)

For the multivariate form where \mathbf{x} is a k \times 1 random vector,

: f(\mathbf{x},\sigma^2\mid\mu,\mathbf{V}^{-1},\alpha,\beta) = |\mathbf{V}|^{-1/2} {(2\pi)^{-k/2} } \, \frac{\beta^\alpha}{\Gamma(\alpha)} \, \left( \frac{1}{\sigma^2} \right)^{\alpha + 1 + k/2} \exp \left( -\frac { 2\beta + (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{V}^{-1} (\mathbf{x} - \boldsymbol{\mu})} {2\sigma^2} \right).

where |\mathbf{V}| is the determinant of the k \times k matrix \mathbf{V}. Note how this last equation reduces to the first form if k = 1 so that \mathbf{x}, \mathbf{V}, \boldsymbol{\mu} are scalars.

== Alternative parameterization ==

It is also possible to let \gamma = 1 / \lambda in which case the pdf becomes

: f(x,\sigma^2\mid\mu,\gamma,\alpha,\beta) = \frac {1} {\sigma\sqrt{2\pi\gamma} } \, \frac{\beta^\alpha}{\Gamma(\alpha)} \, \left( \frac{1}{\sigma^2} \right)^{\alpha + 1} \exp \left( -\frac{2\gamma\beta + (x - \mu)^2}{2\gamma \sigma^2} \right)

In the multivariate form, the corresponding change would be to regard the covariance matrix \mathbf{V} instead of its inverse \mathbf{V}^{-1} as a parameter.

=Cumulative distribution function=

: F(x,\sigma^2\mid\mu,\lambda,\alpha,\beta) = \frac{e^{-\frac{\beta}{\sigma^2}} \left(\frac{\beta }{\sigma ^2}\right)^\alpha

\left(\operatorname{erf}\left(\frac{\sqrt{\lambda} (x-\mu )}{\sqrt{2} \sigma }\right)+1\right)}{2

\sigma^2 \Gamma (\alpha)}

Properties

=Marginal distributions=

Given (x,\sigma^2) \sim \text{N-}\Gamma^{-1}(\mu,\lambda,\alpha,\beta) \! .

as above, \sigma^2 by itself follows an inverse gamma distribution:

:\sigma^2 \sim \Gamma^{-1}(\alpha,\beta) \!

while \sqrt{\frac{\alpha\lambda}{\beta}} (x - \mu) follows a t distribution with 2 \alpha degrees of freedom.{{Cite book |last=Ramírez-Hassan |first=Andrés |url=https://bookdown.org/aramir21/IntroductionBayesianEconometricsGuidedTour/sec42.html#sec42 |title=4.2 Conjugate prior to exponential family {{!}} Introduction to Bayesian Econometrics}}

{{math proof | title=Proof for \lambda = 1 | proof=

For \lambda = 1 probability density function is

f(x,\sigma^2 \mid \mu,\alpha,\beta) = \frac {1} {\sigma\sqrt{2\pi} } \, \frac{\beta^\alpha}{\Gamma(\alpha)} \, \left( \frac{1}{\sigma^2} \right)^{\alpha + 1} \exp \left( -\frac { 2\beta + (x - \mu)^2} {2\sigma^2} \right)

Marginal distribution over x is

\begin{align}

f(x \mid \mu,\alpha,\beta)

& =

\int_0^\infty d\sigma^2 f(x,\sigma^2\mid\mu,\alpha,\beta)

\\

& =

\frac {1} {\sqrt{2\pi} } \, \frac{\beta^\alpha}{\Gamma(\alpha)}

\int_0^\infty d\sigma^2

\left( \frac{1}{\sigma^2} \right)^{\alpha + 1/2 + 1} \exp \left( -\frac { 2\beta + (x - \mu)^2} {2\sigma^2} \right)

\end{align}

Except for normalization factor, expression under the integral coincides with Inverse-gamma distribution

\Gamma^{-1}(x; a, b) = \frac{b^a}{\Gamma(a)}\frac{e^{-b/x}}{{x}^{a+1}} ,

with x=\sigma^2 , a = \alpha + 1/2 , b = \frac { 2\beta + (x - \mu)^2} {2} .

Since \int_0^\infty dx \Gamma^{-1}(x; a, b) = 1, \quad \int_0^\infty dx x^{-(a+1)} e^{-b/x} = \Gamma(a) b^{-a} , and

\int_0^\infty d\sigma^2

\left( \frac{1}{\sigma^2} \right)^{\alpha + 1/2 + 1} \exp \left( -\frac { 2\beta + (x - \mu)^2} {2\sigma^2}

\right)

= \Gamma(\alpha + 1/2) \left(\frac { 2\beta + (x - \mu)^2} {2} \right)^{-(\alpha + 1/2)}

Substituting this expression and factoring dependence on x,

f(x \mid \mu,\alpha,\beta) \propto_{x} \left(1 + \frac{(x - \mu)^2}{2 \beta} \right)^{-(\alpha + 1/2)} .

Shape of generalized Student's t-distribution is

t(x | \nu,\hat{\mu},\hat{\sigma}^2)

\propto_x

\left(1+\frac{1}{\nu} \frac{ (x-\hat{\mu})^2 }{\hat{\sigma}^2 } \right)^{-(\nu+1)/2}

.

Marginal distribution f(x \mid \mu,\alpha,\beta) follows t-distribution with

2 \alpha degrees of freedom

f(x \mid \mu,\alpha,\beta) = t(x | \nu=2 \alpha, \hat{\mu}=\mu, \hat{\sigma}^2=\beta/\alpha )

.

}}

In the multivariate case, the marginal distribution of \mathbf{x} is a multivariate t distribution:

:\mathbf{x} \sim t_{2\alpha}(\boldsymbol{\mu}, \frac{\beta}{\alpha} \mathbf{V}) \!

=Summation=

=Scaling=

Suppose

: (x,\sigma^2) \sim \text{N-}\Gamma^{-1}(\mu,\lambda,\alpha,\beta) \! .

Then for c>0 ,

: (cx,c\sigma^2) \sim \text{N-}\Gamma^{-1}(c\mu,\lambda/c,\alpha,c\beta) \! .

Proof: To prove this let (x,\sigma^2) \sim \text{N-}\Gamma^{-1}(\mu,\lambda,\alpha,\beta) and fix c>0 . Defining Y=(Y_1,Y_2)=(cx,c \sigma^2) , observe that the PDF of the random variable Y evaluated at (y_1,y_2) is given by 1/c^2 times the PDF of a \text{N-}\Gamma^{-1}(\mu,\lambda,\alpha,\beta) random variable evaluated at (y_1/c,y_2/c) . Hence the PDF of Y evaluated at (y_1,y_2) is given by : f_Y(y_1,y_2)=\frac{1}{c^2} \frac {\sqrt{\lambda}} {\sqrt{2\pi y_2/c} } \, \frac{\beta^\alpha}{\Gamma(\alpha)} \, \left( \frac{1}{y_2/c} \right)^{\alpha + 1} \exp \left( -\frac { 2\beta + \lambda(y_1/c - \mu)^2} {2y_2/c} \right) = \frac {\sqrt{\lambda/c}} {\sqrt{2\pi y_2} } \, \frac{(c\beta)^\alpha}{\Gamma(\alpha)} \, \left( \frac{1}{y_2} \right)^{\alpha + 1} \exp \left( -\frac { 2c\beta + (\lambda/c) \, (y_1 - c\mu)^2} {2y_2} \right).\!

The right hand expression is the PDF for a \text{N-}\Gamma^{-1}(c\mu,\lambda/c,\alpha,c\beta) random variable evaluated at (y_1,y_2) , which completes the proof.

=Exponential family=

Normal-inverse-gamma distributions form an exponential family with natural parameters \textstyle\theta_1=\frac{-\lambda}{2}, \textstyle\theta_2=\lambda \mu, \textstyle\theta_3=\alpha , and \textstyle\theta_4=-\beta+\frac{-\lambda \mu^2}{2} and sufficient statistics \textstyle T_1=\frac{x^2}{\sigma^2}, \textstyle T_2=\frac{x}{\sigma^2}, \textstyle T_3=\log \big( \frac{1}{\sigma^2} \big) , and \textstyle T_4=\frac{1}{\sigma^2}.

=Information entropy=

=Kullback–Leibler divergence=

Measures difference between two distributions.

Maximum likelihood estimation

{{Empty section|date=July 2010}}

Posterior distribution of the parameters

Interpretation of the parameters

Generating normal-inverse-gamma random variates

Generation of random variates is straightforward:

  1. Sample \sigma^2 from an inverse gamma distribution with parameters \alpha and \beta
  2. Sample x from a normal distribution with mean \mu and variance \sigma^2/\lambda

Related distributions

  • The normal-gamma distribution is the same distribution parameterized by precision rather than variance
  • A generalization of this distribution which allows for a multivariate mean and a completely unknown positive-definite covariance matrix \sigma^2 \mathbf{V} (whereas in the multivariate inverse-gamma distribution the covariance matrix is regarded as known up to the scale factor \sigma^2) is the normal-inverse-Wishart distribution

See also

References

{{Reflist}}

  • Denison, David G. T.; Holmes, Christopher C.; Mallick, Bani K.; Smith, Adrian F. M. (2002) Bayesian Methods for Nonlinear Classification and Regression, Wiley. {{ISBN|0471490369}}
  • Koch, Karl-Rudolf (2007) Introduction to Bayesian Statistics (2nd Edition), Springer. {{ISBN|354072723X}}

{{ProbDistributions|multivariate}}

Category:Continuous distributions

Category:Multivariate continuous distributions

Category:Normal distribution