Nullspace property
In compressed sensing, the nullspace property gives necessary and sufficient conditions on the reconstruction of sparse signals using the techniques of -relaxation. The term "nullspace property" originates from Cohen, Dahmen, and DeVore.{{Cite journal|last1=Cohen|first1=Albert|last2=Dahmen|first2=Wolfgang|last3=DeVore|first3=Ronald|date=2009-01-01|title=Compressed sensing and best 𝑘-term approximation|journal=Journal of the American Mathematical Society|volume=22|issue=1|pages=211–231|doi=10.1090/S0894-0347-08-00610-3|issn=0894-0347|doi-access=free}} The nullspace property is often difficult to check in practice, and the restricted isometry property is a more modern condition in the field of compressed sensing.
The technique of [[Relaxation (approximation)|<math>\ell_1</math>]]-relaxation
The non-convex -minimization problem,
subject to ,
is a standard problem in compressed sensing. However, -minimization is known to be NP-hard in general.{{Cite journal|last=Natarajan|first=B. K.|date=1995-04-01|title=Sparse Approximate Solutions to Linear Systems|journal=SIAM J. Comput.|volume=24|issue=2|pages=227–234|doi=10.1137/S0097539792240406|s2cid=2072045 |issn=0097-5397}} As such, the technique of -relaxation is sometimes employed to circumvent the difficulties of signal reconstruction using the -norm. In -relaxation, the problem,
subject to ,
is solved in place of the problem. Note that this relaxation is convex and hence amenable to the standard techniques of linear programming - a computationally desirable feature. Naturally we wish to know when -relaxation will give the same answer as the problem. The nullspace property is one way to guarantee agreement.
Definition
An complex matrix has the nullspace property of order , if for all index sets with we have that: for all .
Recovery Condition
The following theorem gives necessary and sufficient condition on the recoverability of a given -sparse vector in . The proof of the theorem is a standard one, and the proof supplied here is summarized from Holger Rauhut.{{Cite book|title=Compressive Sensing and Structured Random Matrices|last=Rauhut|first=Holger|citeseerx = 10.1.1.185.3754|year = 2011}}
Let be a complex matrix. Then every -sparse signal is the unique solution to the -relaxation problem with if and only if satisfies the nullspace property with order .
For the forwards direction notice that and are distinct vectors with by the linearity of , and hence by uniqueness we must have as desired. For the backwards direction, let be -sparse and another (not necessary -sparse) vector such that and . Define the (non-zero) vector and notice that it lies in the nullspace of . Call the support of , and then the result follows from an elementary application of the triangle inequality: , establishing the minimality of .
References
{{Reflist}}