Numerical Methods for Partial Differential Equations

{{for|the article on the numerical methods|Numerical methods for partial differential equations}}

{{Infobox journal

| title = Numerical Methods for Partial Differential Equations

| image = 2018 NMPDE cover.gif

| abbreviation = Numer. Methods Partial Differ. Equ.

| mathscinet = Numer. Methods Partial Differential Equations

| discipline = Partial differential equations, numerical analysis

| editor = Clayton G. Webster

| publisher = John Wiley & Sons

| history = 1985-present

| frequency = Bimonthly

| openaccess =

| license =

| impact = 3.009

| impact-year = 2020

| ISSN = 0749-159X

| eISSN = 1098-2426

| CODEN =

| JSTOR =

| LCCN = 85642963

| OCLC = 888484016

| website = https://onlinelibrary.wiley.com/page/journal/10982426/homepage/productinformation.html

| link1 = https://onlinelibrary.wiley.com/toc/10982426/current

| link1-name = Online access

| link2 = https://onlinelibrary.wiley.com/loi/10982426

| link2-name = Online archive

}}

Numerical Methods for Partial Differential Equations is a bimonthly peer-reviewed scientific journal covering the development and analysis of new methods for the numerical solution of partial differential equations. It was established in 1985 and is published by John Wiley & Sons. The editors-in-chief are George F. Pinder (University of Vermont) and John R. Whiteman (Brunel University).

Abstracting and indexing

The journal is abstracted and indexed in:

{{columns-list|colwidth=30em|

  • CSA databases{{cite web |url=http://miar.ub.edu/issn/0749-159X |work=MIAR: Information Matrix for the Analysis of Journals |publisher=University of Barcelona |title=Numerical Methods for Partial Differential Equations |accessdate=2018-12-10}}
  • Current Contents/Engineering, Computing & Technology{{cite web |url=http://mjl.clarivate.com/ |title=Master Journal List |publisher=Clarivate Analytics |work=Intellectual Property & Science |accessdate=2018-12-10}}
  • EBSCO databases
  • Ei Compendex{{cite web |url=http://www.elsevier.com/online-tools/engineering-village/contentdatabase-overview |title=Content/Database Overview - Compendex Source List |publisher=Elsevier |work=Engineering Village |accessdate=2018-12-10}}
  • Inspec{{cite web |url=http://www.theiet.org/resources/inspec/support/docs/loj.cfm?type=pdf |title=Inspec list of journals |format=PDF |publisher=Institution of Engineering and Technology |work=Inspec |accessdate=2018-12-10 |archive-date=2018-10-16 |archive-url=https://web.archive.org/web/20181016050140/https://www.theiet.org/resources/inspec/support/docs/loj.cfm?type=pdf |url-status=dead }}
  • MathSciNet
  • ProQuest databases
  • Science Citation Index Expanded
  • Scopus{{cite web |url=https://www.scopus.com/sourceid/25713 |title=Source details: Numerical Methods for Partial Differential Equations |publisher=Elsevier |work=Scopus preview |accessdate=2018-12-10}}
  • Zentralblatt MATH{{cite web |url=http://www.zentralblatt-math.org/serials/ |title=Serials Database |publisher=Springer Science+Business Media |work=Zentralblatt MATH |accessdate=2018-12-10 |archive-url=https://web.archive.org/web/20190412222112/https://www.zentralblatt-math.org/serials/ |archive-date=2019-04-12 |url-status=dead }}

}}

According to the Journal Citation Reports, the journal has a 2020 impact factor of 3.009.{{cite book |year=2021 |chapter=Numerical Methods for Partial Differential Equations |title=2020 Journal Citation Reports |publisher=Clarivate Analytics |edition=Science |series=Web of Science |title-link=Journal Citation Reports}}

References

{{Reflist|30em}}