Octahedral cupola

{{Short description|Object in 4-dimensional geometry}}

{{one source |date=April 2024}}

class="wikitable" align="right" style="margin-left:10px" width="280"
bgcolor=#e7dcc3 colspan=3|Octahedral cupola
align=center colspan=3|280px
Schlegel diagram
bgcolor=#e7dcc3|Type

|colspan=2|Polyhedral cupola

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|{3,4} v rr{3,4}

bgcolor=#e7dcc3|Cells

|28

|1 {3,4} 30px
1 rr{4,3} 30px
8+12 {}×{3} 30px
6 {}v{4} 30px

bgcolor=#e7dcc3|Faces

|82

|40 triangles
42 squares

bgcolor=#e7dcc3|Edges

|colspan=2|84

bgcolor=#e7dcc3|Vertices

|colspan=2|30

bgcolor=#e7dcc3|Dual

|colspan=2|

bgcolor=#e7dcc3|Symmetry group

|colspan=2|[4,3,1], order 48

bgcolor=#e7dcc3|Properties

|colspan=2|convex, regular-faced

In 4-dimensional geometry, the octahedral cupola is a 4-polytope bounded by one octahedron and a parallel rhombicuboctahedron, connected by 20 triangular prisms, and 6 square pyramids.[https://www.bendwavy.org/klitzing/pdf/artConvSeg_8.pdf Convex Segmentochora] Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000 (4.107 octahedron || rhombicuboctahedron)

Related polytopes

The octahedral cupola can be sliced off from a runcinated 24-cell, on a hyperplane parallel to an octahedral cell. The cupola can be seen in a B2 and B3 Coxeter plane orthogonal projection of the runcinated 24-cell:

class=wikitable
align=center

!Runcinated 24-cell

!Octahedron
(cupola top)

!Rhombicuboctahedron
(cupola base)

colspan=3|B3 Coxeter plane
align=center

|160px

|60px

|120px

colspan=3|B2 Coxeter plane
align=center

|160px

|60px

|120px

See also

References

{{reflist}}