Ontotext#Ontotext GraphDB

{{Short description|Software company}}

{{Use dmy dates|date=August 2021}}

{{Multiple issues|{{COI|date=September 2018}}

{{notability|Companies|date=September 2018}}

{{third-party|date=September 2018}}}}{{Infobox company

| name = Ontotext AD

| logo = Ontotext logo.png

| type = Private corporation

| foundation = 2000

| key_people = Atanas Kiryakov, CEO

Vassil Momtchev, CTO

Veska Davidova, COO

| industry = Software

Semantic Web

Semantic technology

Linked Data

Text mining

Information discovery

Graph database

Knowledge Engineering

Triplestore

Knowledge Graph

| products = Ontotext GraphDB,{{cite web|title=Ontotext GraphDB|url=http://graphdb.ontotext.com|publisher=Ontotext}}

Ontotext Semantic Platform,

GraphDB Cloud,{{cite web|title=GraphDB Cloud|url=https://cloud.ontotext.com|publisher=Ontotext}}

Media & Publishing,

Marketing Intelligence,

Life Sciences & Healthcare,

Compliance & Document Management,

Galleries, Libraries, Archives & Museums (GLAM)

| homepage = [http://www.ontotext.com/ Ontotext web site]

}}

Ontotext is a software company that produces software relating to data management. Its main products are GraphDB, an RDF database; and Ontotext Platform, a general data management platform based on knowledge graphs. It was founded in 2000 in Bulgaria, and now has offices internationally.{{Cite web |date=2024-01-31 |title=Ontotext |url=https://www.bloorresearch.com/company/ontotext/,%20https://www.bloorresearch.com/company/ontotext/,%20https://www.bloorresearch.com/company/ontotext/ |access-date=2024-06-25 |website=Bloor Research |language=en-GB}} Together with the BBC, Ontotext developed one of the early large-scale industrial semantic applications, Dynamic Semantic Publishing, starting in 2010.{{cite web|last1=O'Donovan|first1=John|title=The World Cup and a call to action around Linked Data|url=https://www.bbc.co.uk/blogs/bbcinternet/2010/07/the_world_cup_and_a_call_to_ac.html|publisher=BBC Internet Blog|accessdate=2 November 2016}}

Ontotext GraphDB, formerly OWLIM, is an RDF triplestore optimized for metadata and master data management, as well as graph analytics and data publishing. Since version 8.0 GraphDB integrates OpenRefine to allow for easy ingestion and reconciliation of tabular data.{{cite news|last1=Howard|first1=Philip|title=Graph update: Ontotext GraphDB|newspaper=Bloor Research |url=https://www.bloorresearch.com/2017/05/graph-update-ontotext-graphdb/|date=10 May 2017}} Ontotext Platform is a general-purpose data management tool centered around the idea of knowledge graphs.

Ontotext GraphDB

Ontotext GraphDB (previously known as BigOWLIM) is a graph-based database{{Cite web |title=Graph Databases (Technology) |url=https://www.bloorresearch.com/technology/graph-databases/ |access-date=2020-12-09 |website=Bloor Research |language=en-GB |quote=We would argue that the market leaders in this space continue to be Neo4J and OntoText (GraphDB), which are graph and RDF database providers respectively.}} capable of working with knowledge graphs{{Cite web |last=Buchmann |first=Robert |date=2019 |title=Model-Aware Software EngineeringA Knowledge-based Approach to Model-Driven Software Engineering |url=https://www.scitepress.org/papers/2018/66941/66941.pdf |access-date=2021-04-15}} produced by Ontotext, compliant with the RDF graph data model{{Cite web |title=About GraphDB |url=https://graphdb.ontotext.com/documentation/8.4/free/about-graphdb.html |access-date=2024-06-25 |website=GraphDB Free 8.4 documentation}} and the SPARQL query language.{{Cite web |title=SparqlImplementations - W3C Wiki |url=https://www.w3.org/wiki/SparqlImplementations |access-date=2021-04-15 |website=www.w3.org}} Some categorize it as a NoSQL database, meaning that it does not use tables like some other databases.{{Cite web|title=GraphDB|url=https://www.capterra.co.uk/software/157533/graph-db|access-date=2020-12-09|website=Capterra|language=en-GB}} In 2014 Ontotext acquired the trademark "GraphDB" from Sones.{{Citation needed|date=June 2024}}

GraphDB is also an advanced ontology (specification of entities, their properties, and their relationships) repository.{{Cite web|last=Ledvinka|first=Martin|date=2015|title=JOPA: Accessing Ontologies in an Object-oriented Way|url=https://www.scitepress.org/papers/2015/54003/54003.pdf|access-date=2021-04-15}} The underlying idea of the database is of a semantic repository, storing semantic relationships between objects.

= Architecture =

GraphDB is used to store and manage semantic knowledge graph data. It is built on top of the RDF4J architecture for handling RDF data, implemented through the use of RDF4J's Storage and Inference Layer (SAIL).{{Citation needed|date=June 2024}} The architecture is made of three main components:{{Citation needed|date=June 2024}}

  • The Workbench is a web-based administration tool. The user interface is based on RDF4J Workbench Web Application.
  • The Engine consists of a query optimizer, reasoner,{{Cite journal|last1=Stoilos|first1=Giorgos|last2=Grau|first2=Bernardo Cuenca|last3=Horrocks|first3=Ian|title=How Incomplete is Your Semantic Web Reasoner? |date=2010-07-05|url=https://ojs.aaai.org/index.php/AAAI/article/view/7498|journal=Proceedings of the AAAI Conference on Artificial Intelligence|language=en|volume=24|issue=1|pages=1431–1436 |doi=10.1609/aaai.v24i1.7498 |s2cid=34119609 |issn=2374-3468|doi-access=free}} and a storage and plugin manager.{{Citation needed|date=June 2024}} The reasoner in GraphDB is forward chaining, reasoning forward from given priors, with the goal of total materialization.{{Cite book|last1=Kiryakov|first1=Atanas|last2=Ognyanov|first2=Damyan|last3=Manov|first3=Dimitar|title=Web Information Systems Engineering – WISE 2005 Workshops |chapter=OWLIM – A Pragmatic Semantic Repository for OWL |date=2005|editor-last=Dean|editor-first=Mike|editor2-last=Guo|editor2-first=Yuanbo|editor3-last=Jun|editor3-first=Woochun|editor4-last=Kaschek|editor4-first=Roland|editor5-last=Krishnaswamy|editor5-first=Shonali|editor6-last=Pan|editor6-first=Zhengxiang|editor7-last=Sheng|editor7-first=Quan Z.|series=Lecture Notes in Computer Science|volume=3807|language=en|location=Berlin, Heidelberg|publisher=Springer|pages=182–192|doi=10.1007/11581116_19|isbn=978-3-540-32287-0}} The plugin manager supports user-defined indexes and can be configured dynamically during run-time.{{Citation needed|date=June 2024}}

= Uses =

Ontotext Graph DB has been used in genetics,{{Cite journal|last1=Poncheewin|first1=Wasin|last2=Hermes|first2=Gerben D. A.|last3=van Dam|first3=Jesse C. J.|last4=Koehorst|first4=Jasper J.|last5=Smidt|first5=Hauke|last6=Schaap|first6=Peter J.|date=2020|title=NG-Tax 2.0: A Semantic Framework for High-Throughput Amplicon Analysis|journal=Frontiers in Genetics|language=English|volume=10|page=1366|doi=10.3389/fgene.2019.01366|pmid=32117417|pmc=6989550|issn=1664-8021|doi-access=free}} healthcare,{{Cite book|last1=Barisevičius|first1=Gintaras|last2=Coste|first2=Martin|last3=Geleta|first3=David|last4=Juric|first4=Damir|last5=Khodadadi|first5=Mohammad|last6=Stoilos|first6=Giorgos|last7=Zaihrayeu|first7=Ilya|title=The Semantic Web – ISWC 2018 |chapter=Supporting Digital Healthcare Services Using Semantic Web Technologies |date=2018|editor-last=Vrandečić|editor-first=Denny|editor2-last=Bontcheva|editor2-first=Kalina|editor3-last=Suárez-Figueroa|editor3-first=Mari Carmen|editor4-last=Presutti|editor4-first=Valentina|editor5-last=Celino|editor5-first=Irene|editor6-last=Sabou|editor6-first=Marta|editor7-last=Kaffee|editor7-first=Lucie-Aimée|editor8-last=Simperl|editor8-first=Elena|chapter-url=https://link.springer.com/chapter/10.1007/978-3-030-00668-6_18|series=Lecture Notes in Computer Science|volume=11137|language=en|location=Cham|publisher=Springer International Publishing|pages=291–306|doi=10.1007/978-3-030-00668-6_18|isbn=978-3-030-00668-6}} data forensics,{{Cite journal|date=2019-03-01|title=Leveraging learning innovations in cognitive computing with massive data sets: Using the offshore Panama papers leak to discover patterns|url=https://www.sciencedirect.com/science/article/abs/pii/S0747563217306933|journal=Computers in Human Behavior|language=en|volume=92|pages=507–518|doi=10.1016/j.chb.2017.12.013|issn=0747-5632|last1=Zhuhadar|first1=Leyla|last2=Ciampa|first2=Mark|s2cid=59528294|url-access=subscription}} cultural heritage studies,{{Cite journal|date=2016-07-01|title=Exploring cultural heritage repositories with creative intelligence. The Labyrinth 3D system|url=https://www.sciencedirect.com/science/article/abs/pii/S1875952116300167|journal=Entertainment Computing|language=en|volume=16|pages=41–52|doi=10.1016/j.entcom.2016.05.002|issn=1875-9521|hdl=2318/1578514|hdl-access=free|last1=Damiano|first1=Rossana|last2=Lombardo|first2=Vincenzo|last3=Lieto|first3=Antonio|last4=Borra|first4=Davide|s2cid=31774697 }} geography,{{Cite web|last=Panasiuk|first=Oleksandra|date=2019|title=Representing GeoData for Tourism with Schema.org|url=https://schema-tourism.sti2.org/sites/default/files/representing_geodata.pdf|access-date=2021-04-15}} infrastructure planning,{{Citation|last1=Azzam|first1=Amr|title=The CitySPIN Platform: A CPSS Environment for City-Wide Infrastructures|date=2019|url=http://ceur-ws.org/Vol-2530/paper8.pdf|pages=57–64|editor-last=Antonella Longo|editor-first=Maria Fazio|place=Bilbao, Spain|publisher=CEUR Workshop Proceedings|language=en|access-date=2021-04-15|last2=Aryan|first2=Peb Ruswono|last3=Cecconi|first3=Alessio|last4=Di Ciccio|first4=Claudio|last5=Ekaputra|first5=Fajar J.|last6=Fernandez Garcia|first6=Javier David|last7=Karampatakis|first7=Sotiris|last8=Kiesling|first8=Elmar|last9=Musil|first9=Angelika}} civil engineering,{{Cite journal|date=2021-04-01|title=A semantic approach to enable data integration for the domain of flood risk management|journal=Environmental Challenges|language=en|volume=3|pages=100064|doi=10.1016/j.envc.2021.100064|issn=2667-0100|doi-access=free|last1=Nundloll|first1=Vatsala|last2=Lamb|first2=Rob|last3=Hankin|first3=Barry|last4=Blair|first4=Gordon|bibcode=2021EnvCh...300064N }} digital historiography,{{Cite web|last=Quaresma|first=Paulo|date=2020|title=Information Extraction from Historical Texts:a Case Study|url=http://ceur-ws.org/Vol-2607/short2.pdf|access-date=2021-04-15}} and oceanography.{{Cite book|last1=Zárate|first1=Marcos|last2=Rosales|first2=Pablo|last3=Braun|first3=Germán|last4=Lewis|first4=Mirtha|last5=Fillottrani|first5=Pablo Rubén|last6=Delrieux|first6=Claudio|title=Knowledge Graphs and Semantic Web |chapter=OceanGraph: Some Initial Steps Toward a Oceanographic Knowledge Graph |date=2019|editor-last=Villazón-Terrazas|editor-first=Boris|editor2-last=Hidalgo-Delgado|editor2-first=Yusniel|chapter-url=https://link.springer.com/chapter/10.1007/978-3-030-21395-4_3|series=Communications in Computer and Information Science|volume=1029|language=en|location=Cham|publisher=Springer International Publishing|pages=33–40|doi=10.1007/978-3-030-21395-4_3|isbn=978-3-030-21395-4|s2cid=160011396}} Commercial clients include the BBC, the Financial Times,{{Cite web|title=Semantic Technology for online, broadcast and print media|url=http://videolectures.net/wims2014_rayfield_semantic_technology/|access-date=2020-12-09|website=videolectures.net|language=en}} Springer Nature,{{Cite web|title=SciGraph {{!}} For Researchers|url=https://www.springernature.com/gp/researchers/scigraph|access-date=2020-12-09|website=Springer Nature}} the UK Parliament,{{Cite web|last=|first=|date=|title=Linked Government Data|url=https://www.nationalarchives.gov.uk/documents/information-management/open-and-linked-data-johnsheridan.ppt|archive-url=|archive-date=|access-date=2020-12-09|website=nationalarchives.gov.uk}}{{Cite web|title=Performance testing a graph database {{!}} Parliamentary Digital Service|url=https://pds.blog.parliament.uk/2017/12/15/performance-testing-a-graph-database/|access-date=2021-04-15|website=pds.blog.parliament.uk|language=en}} and AstraZeneca.{{Cite web|last=Anadiotis|first=George|title=Graph databases and RDF: It's a family affair|url=https://www.zdnet.com/article/graph-databases-and-rdf-its-a-family-affair/|access-date=2020-12-09|website=ZDNet|language=en}}

See also

References

{{Reflist}}