Optical circulator

{{Short description|Optical device in which light entering any port exits from the next}}

{{More citations needed|date=October 2015}}

File:Circulator-symbol-CCW.svg

An optical circulator is a three- or four-port optical device designed such that light entering any port exits from the next. This means that if light enters port 1 it is emitted from port 2, but if some of the emitted light is reflected back to the circulator, it does not come out of port 1 but instead exits from port 3. This is analogous to the operation of an electronic circulator. Fiber-optic circulators are used to separate optical signals that travel in opposite directions in an optical fiber, for example to achieve bi-directional transmission over a single fiber.{{cite book|author=IBM Redbooks |date=9 November 1998 |publisher=IBM Corporation|section=5.4.6 Circulators |isbn=0738400580 |url=http://imedea.uib-csic.es/~salvador/coms_optiques/addicional/ibm/ch05/05-16.html |title=Understanding Optical Communications |archive-url=https://web.archive.org/web/20150710105519/http://imedea.uib-csic.es/~salvador/coms_optiques/addicional/ibm/ch05/05-16.html |archive-date=2015-07-10 |accessdate=10 July 2015}} Because of their high isolation of the input and reflected optical powers and their low insertion loss, optical circulators are widely used in advanced fiber-optic communications and fiber-optic sensor applications.

Optical circulators are non-reciprocal optics, which means that changes in the properties of light passing through the device are not reversed when the light passes through in the opposite direction. This can only happen when the symmetry of the system is broken, for example by an external magnetic field. A Faraday rotator is another example of a non-reciprocal optical device, and indeed it is possible to construct an optical circulator based on a Faraday rotator.

History

In 1965, Ribbens reported an early form of optical circulator that utilized a Nicol prism with a Faraday rotator.{{cite journal |last1=Ribbens |first1=William B. |title=An Optical Circulator |journal=Applied Optics |date=1965 |volume=4 |issue=8 |pages=1037–1038 |doi=10.1364/AO.4.001037 |bibcode=1965ApOpt...4.1037R |url=https://opg.optica.org/ao/fulltext.cfm?uri=ao-4-8-1037&id=167852}} With the advent of fiber and guided-wave optics, waveguide-integrable and polarization-independent optical circulators were later introduced.{{cite journal |last1=Hidetoshi |first1=Iwamura |last2=Hiroshi |first2=Iwasaki |last3=Kenichi |first3=Kubodera |last4=Yasuhiro |first4=Torii |last5=Juichi |first5=Noda |title=Simple polarisation-independent optical circulator for optical transmission systems |journal=Electronics Letters |date=1979 |volume=15 |issue=25 |pages=830–831 |doi=10.1049/el:19790590 |bibcode=1979ElL....15..830H |url=https://digital-library.theiet.org/content/journals/10.1049/el_19790590}}{{cite journal |last1=Fuji |first1=Y. |title=High-isolation polarization-independent optical circulator |journal=Journal of Lightwave Technology |date=1991 |volume=9 |issue=10 |pages=1238–1243 |doi=10.1109/50.90921 |bibcode=1991JLwT....9.1238F |url=https://ieeexplore.ieee.org/document/90921}}{{cite journal |last1=Sugimoto |first1=N. |last2=Shintaku |first2=T. |last3=Tate |first3=A. |last4=Terui |first4=H. |last5=Shimokozono |first5=M. |last6=Kubota |first6=E. |last7=Ishii |first7=M. |last8=Inoue |first8=Y. |title=Waveguide polarization-independent optical circulator |journal=IEEE Photonics Technology Letters |date=1999 |volume=11 |issue=3 |pages=355–357 |doi=10.1109/68.748233|bibcode=1999IPTL...11..355S |s2cid=35722016 }} The concept was later extended to silicon photonic waveguide systems.{{cite journal |last1=Takei |first1=Ryohei |last2=Mizumoto |first2=Tetsuya |title=Design and Simulation of Silicon Waveguide Optical Circulator Employing Nonreciprocal Phase Shift |journal=Japanese Journal of Applied Physics |date=2010 |volume=49 |issue=52203 |page=052203 |doi=10.1143/JJAP.49.052203 |bibcode=2010JaJAP..49e2203T |s2cid=19254463 |url=https://iopscience.iop.org/article/10.1143/JJAP.49.052203/meta|author-link2=Tetsuya Mizumoto}}{{cite journal |last1=Mitsuya |first1=Kota |last2=Shoji |first2=Yuya |last3=Mizumoto |first3=Tetsuya |title=Demonstration of a Silicon Waveguide Optical Circulator |journal=IEEE Photonics Technology Letters |date=2013 |volume=25 |issue=8 |pages=721–723 |doi=10.1109/LPT.2013.2247995 |bibcode=2013IPTL...25..721M |s2cid=31886457 |url=https://ieeexplore.ieee.org/document/6471748|author-link3=Tetsuya Mizumoto}}{{cite journal |last1=Pintus |first1=Paolo |last2=Huang |first2=Duanni |last3=Zhang |first3=Chong |last4=Shoji |first4=Yuya |last5=Mizumoto |first5=Tetsuya |last6=Bowers |first6=John E. |title=Microring-Based Optical Isolator and Circulator with Integrated Electromagnet for Silicon Photonics |journal=Journal of Lightwave Technology |date=2017 |volume=35 |issue=8 |pages=1429–1437 |doi=10.1109/JLT.2016.2644626|bibcode=2017JLwT...35.1429P |s2cid=32824770 |author-link5=Tetsuya Mizumoto|doi-access=free }}{{cite journal |last1=Huang |first1=Duanni |last2=Pintus |first2=Paolo |last3=Zhang |first3=Chong |last4=Morton |first4=Paul |last5=Shoji |first5=Yuya |last6=Mizumoto |first6=Tetsuya |last7=Bowers |first7=John E. |title=Dynamically reconfigurable integrated optical circulators |journal=Optica |date=2017 |volume=4 |issue=1 |pages=23–30 |doi=10.1364/OPTICA.4.000023 |bibcode=2017Optic...4...23H |url=https://opg.optica.org/optica/fulltext.cfm?uri=optica-4-1-23&id=356751|author-link6=Tetsuya Mizumoto|doi-access=free }} In 2016, Scheucher et al. have demonstrated a fiber-integrated optical circulator whose nonreciprocal behavior originated from the chiral interaction between a single 85Rb atom and the confined light in a whispering-gallery mode microresonator. The routing direction of the device is controlled by the internal quantum state of the atom and the device is able to route individual photons.{{cite journal |last1=Scheucher |first1=Michael |last2=Hilico |first2=Adèle |last3=Will |first3=Elisa |last4=Volz |first4=Jürgen |last5=Rauschenbeutel |first5=Arno |title=Quantum optical circulator controlled by a single chirally coupled atom |journal=Science |date=2016 |volume=354 |issue= 6319 |pages=1577–1580 |doi=10.1126/science.aaj2118 |pmid=27940579 |arxiv=1609.02492 |bibcode=2016Sci...354.1577S |s2cid=47714 |url=https://www.science.org/doi/abs/10.1126/science.aaj2118}}

In 2013, Davoyan and Engheta proposed a nanoscale plasmonic Y-circulator based on three dielectric waveguides interconnected with a magneto-optical junction with plasmonic nanorods.{{cite journal |last1=Davoyan |first1=Arthur R. |last2=Engheta |first2=Nader |author1-link=Nader Engheta |title=Nanoscale plasmonic circulator |journal=New Journal of Physics |date=2013 |volume=15 |issue=83054 |page=083054 |doi=10.1088/1367-2630/15/8/083054 |arxiv=1302.5300 |bibcode=2013NJPh...15h3054D |s2cid=119232939 |url=https://iopscience.iop.org/article/10.1088/1367-2630/15/8/083054/meta}}

See also

References

{{Reflist}}