Order-3-7 heptagonal honeycomb

{{Short description|Regular space-filling tessellation with Schläfli symbol (7,3,7)}}

class="wikitable" align="right" style="margin-left:10px" width=240

!bgcolor=#e7dcc3 colspan=2|Order-3-7 heptagonal honeycomb

bgcolor=#e7dcc3|TypeRegular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{7,3,7}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|7|node|3|node|7|node}}
bgcolor=#e7dcc3|Cells{7,3} 60px
bgcolor=#e7dcc3|Faces{7}
bgcolor=#e7dcc3|Edge figure{7}
bgcolor=#e7dcc3|Vertex figure{3,7}
bgcolor=#e7dcc3|Dualself-dual
bgcolor=#e7dcc3|Coxeter group[7,3,7]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 3-space, the order-3-7 heptagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {7,3,7}.

Geometry

All vertices are ultra-ideal (existing beyond the ideal boundary) with seven heptagonal tilings existing around each edge and with an order-7 triangular tiling vertex figure.

class=wikitable

|240px
Poincaré disk model

|240px
Ideal surface

Related polytopes and honeycombs

It a part of a sequence of regular polychora and honeycombs {p,3,p}:

{{Symmetric2 tessellations}}

{{Clear}}

= Order-3-8 octagonal honeycomb=

class="wikitable" align="right" style="margin-left:10px" width=280

!bgcolor=#e7dcc3 colspan=2|Order-3-8 octagonal honeycomb

bgcolor=#e7dcc3|TypeRegular honeycomb
bgcolor=#e7dcc3|Schläfli symbols{8,3,8}
{8,(3,4,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|8|node|3|node|8|node}}
{{CDD|node_1|8|node|3|node|8|node_h0}} = {{CDD|node_1|8|node|split1|branch|label4}}
bgcolor=#e7dcc3|Cells{8,3} 60px
bgcolor=#e7dcc3|Faces{8}
bgcolor=#e7dcc3|Edge figure{8}
bgcolor=#e7dcc3|Vertex figure{3,8} 40px
{(3,8,3)} 40px
bgcolor=#e7dcc3|Dualself-dual
bgcolor=#e7dcc3|Coxeter group[8,3,8]
[8,((3,4,3))]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 3-space, the order-3-8 octagonal honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {8,3,8}. It has eight octagonal tilings, {8,3}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many octagonal tilings existing around each vertex in an order-8 triangular tiling vertex arrangement.

class=wikitable

|240px
Poincaré disk model

It has a second construction as a uniform honeycomb, Schläfli symbol {8,(3,4,3)}, Coxeter diagram, {{CDD|node_1|8|node|split1|branch|label4}}, with alternating types or colors of cells. In Coxeter notation the half symmetry is [8,3,8,1+] = [8,((3,4,3))].

{{Clear}}

= Order-3-infinite apeirogonal honeycomb =

class="wikitable" align="right" style="margin-left:10px" width=240

!bgcolor=#e7dcc3 colspan=2|Order-3-infinite apeirogonal honeycomb

bgcolor=#e7dcc3|TypeRegular honeycomb
bgcolor=#e7dcc3|Schläfli symbols{∞,3,∞}
{∞,(3,∞,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|infin|node|3|node|infin|node}}
{{CDD|node_1|infin|node|3|node|infin|node_h0}} ↔ {{CDD|node_1|infin|node|split1|branch|labelinfin}}
bgcolor=#e7dcc3|Cells{∞,3} 60px
bgcolor=#e7dcc3|Faces{∞}
bgcolor=#e7dcc3|Edge figure{∞}
bgcolor=#e7dcc3|Vertex figure40px {3,∞}
40px {(3,∞,3)}
bgcolor=#e7dcc3|Dualself-dual
bgcolor=#e7dcc3|Coxeter group[∞,3,∞]
[∞,((3,∞,3))]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 3-space, the order-3-infinite apeirogonal honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {∞,3,∞}. It has infinitely many order-3 apeirogonal tiling {∞,3} around each edge. All vertices are ultra-ideal (Existing beyond the ideal boundary) with infinitely many apeirogonal tilings existing around each vertex in an infinite-order triangular tiling vertex arrangement.

class=wikitable

|240px
Poincaré disk model

|240px
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {∞,(3,∞,3)}, Coxeter diagram, {{CDD|node_1|infin|node|split1|branch|labelinfin}}, with alternating types or colors of apeirogonal tiling cells.

See also

References

{{reflist}}

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [http://www.sciencedirect.com/science/article/pii/0021869382903180]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[https://arxiv.org/abs/1310.8608]
  • [https://arxiv.org/abs/1511.02851 Visualizing Hyperbolic Honeycombs arXiv:1511.02851] Roice Nelson, Henry Segerman (2015)