Order-4 square hosohedral honeycomb

class="wikitable" align="right" style="margin-left:10px"

!bgcolor=#e7dcc3 colspan=2|Order-4 square hosohedral honeycomb

align=center

|colspan=2|300px
Centrally projected onto a sphere

bgcolor=#e7dcc3|TypeDegenerate regular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{2,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|2|node|4|node|4|node}}
{{CDD|node_1|2|node|infin|node|2|node|infin|node}}
bgcolor=#e7dcc3|Cells{2,4} 40px
bgcolor=#e7dcc3|Faces{2}
bgcolor=#e7dcc3|Edge figure{4}
bgcolor=#e7dcc3|Vertex figure{4,4}
50px
bgcolor=#e7dcc3|DualOrder-2 square tiling honeycomb
bgcolor=#e7dcc3|Coxeter group[2,4,4]
bgcolor=#e7dcc3|PropertiesRegular

In geometry, the order-4 square hosohedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {2,4,4}. It has 4 square hosohedra {2,4} around each edge. In other words, it is a packing of infinitely tall square columns. It is a degenerate honeycomb in Euclidean space, but can be seen as a projection onto the sphere. Its vertex figure, a square tiling is seen on each hemisphere.

Images

Stereographic projections of spherical projection, with all edges being projected into circles.

class=wikitable
align=center

|400px
Centered on pole

align=center

|400px
Centered on equator

Related honeycombs

It is a part of a sequence of honeycombs with a square tiling vertex figure:

{{Square tiling vertex figure tessellations}}

= Truncated order-4 square hosohedral honeycomb =

class="wikitable" align="right" style="margin-left:10px"

!bgcolor=#e7dcc3 colspan=2|Order-2 square tiling honeycomb
Truncated order-4 square hosohedral honeycomb
240px
Partial tessellation with alternately colored cubes

bgcolor=#e7dcc3|Typeuniform convex honeycomb
bgcolor=#e7dcc3|Schläfli symbol{4,4}×{}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|4|node|4|node|2|node_1}}
{{CDD|node|4|node_1|4|node|2|node_1}}
{{CDD|node_1|4|node|4|node_1|2|node_1}}
bgcolor=#e7dcc3|Cells{3,4} 40px
bgcolor=#e7dcc3|Faces{4}
bgcolor=#e7dcc3|Vertex figureSquare pyramid
bgcolor=#e7dcc3|Dual
bgcolor=#e7dcc3|Coxeter group[2,4,4]
bgcolor=#e7dcc3|PropertiesUniform

The {2,4,4} honeycomb can be truncated as t{2,4,4} or {}×{4,4}, Coxeter diagram {{CDD|node_1|2|node_1|4|node|4|node}}, seen as a layer of cubes, partially shown here with alternately colored cubic cells. Thorold Gosset identified this semiregular infinite honeycomb as a cubic semicheck.

The alternation of this honeycomb, {{CDD|node_h|2x|node_h|4|node|4|node}}, consists of infinite square pyramids and infinite tetrahedrons, between 2 square tilings.

See also

References

{{reflist}}

  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space])

Category:Regular 3-honeycombs