Order-6 hexagonal tiling
{{Uniform hyperbolic tiles db|Reg hyperbolic tiling stat table|U66_0}}
In geometry, the order-6 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,6} and is self-dual.
Symmetry
This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *333333 with 6 order-3 mirror intersections. In Coxeter notation can be represented as [6*,6], removing two of three mirrors (passing through the hexagon center) in the [6,6] symmetry.
The even/odd fundamental domains of this kaleidoscope can be seen in the alternating colorings of the {{CDD|node_1|split1-66|branch}} tiling:
Related polyhedra and tiling
This tiling is topologically related as a part of sequence of regular tilings with order-6 vertices with Schläfli symbol {n,6}, and Coxeter diagram {{CDD|node_1|n|node|6|node}}, progressing to infinity.
{{Order-6 regular tilings}}
This tiling is topologically related as a part of sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram {{CDD|node_1|6|node|n|node}}, progressing to infinity.
{{Hexagonal_regular_tilings}}
{{Order 6-6 tiling table}}
{{Order 3-2-3-2 tiling table}}
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
See also
{{Commonscat|Order-6 hexagonal tiling}}
External links
- {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- [http://bork.hampshire.edu/~bernie/hyper/ Hyperbolic and Spherical Tiling Gallery]
- [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings]
- [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch]
{{Tessellation}}