Orders of magnitude (power)#microwatt .2810.E2.88.926 watt.29

{{Short description|Comparison of a wide range of physical powers}}

{{Use mdy dates|date=September 2018}}

{{more citations needed|date=November 2020}}

This page lists examples of the power in watts produced by various sources of energy. They are grouped by orders of magnitude from small to large.

Below 1 W

{{See also|dBm#Table_of_Examples}}

class="wikitable"
Factor (watts)

! SI prefix

! Value (watts)

!Value (decibel-milliwatts)

! Item

10−50

|

|5.4 × 10−50

|−463 dBm

|astro: Hawking radiation power of the ultramassive black hole TON 618.{{Cite journal |last1=Ge |first1=Xue |last2=Zhao |first2=Bi-Xuan |last3=Bian |first3=Wei-Hao |last4=Frederick |first4=Green Richard |date=March 2019 |title=The Blueshift of the C iv Broad Emission Line in QSOs |journal=The Astronomical Journal |language=en |volume=157 |issue=4 |pages=148 |doi=10.3847/1538-3881/ab0956 |doi-access=free |arxiv=1903.08830 |bibcode=2019AJ....157..148G |issn=1538-3881}}Calculated using M_BH = 4.07e+10 M_sol.

10−27{{Anchor|10-27}}

| ronto- (rW)

| 1.64{{e

27}}

|−238 dBm

| phys: approximate power of gravitational radiation emitted by a 1000 kg satellite in geosynchronous orbit around the Earth.

10−24{{Anchor|10-24}}

| yocto- (yW)

|1{{e

24}}

|−210 dBm

|

10−21{{Anchor|10-21}}

| {{nowrap|zepto- (zW)}}

| 1{{e

21}}

|−180 dBm

|biomed: approximate lowest recorded power consumption of a deep-subsurface marine microbe{{Cite web|url=https://www.ted.com/talks/karen_lloyd_this_deep_sea_mystery_is_changing_our_understanding_of_life/transcript?language=en|title=Transcript of "This deep-sea mystery is changing our understanding of life"|date=February 6, 2018 }}

10−20

|

|1{{e

20}}

|−170 dBm

|tech: approximate power of Galileo space probe's radio signal (when at Jupiter) as received on earth by a 70-meter DSN antenna.

10−18{{Anchor|10-18}}

| atto- (aW)

|1{{e

18}}

|−150 dBm

|phys: approximate power scale at which operation of nanoelectromechanical systems are overwhelmed by thermal fluctuations.{{cite journal |title=Nanoelectromechanical systems face the future |url=http://physicsweb.org/article/world/14/2/8 |journal=Physics World |date=February 1, 2001 }}

10−16

|

|1{{e

16}}

|−130 dBm

|tech: the GPS signal strength measured at the surface of the Earth.{{clarify| reason = this appears to be meaningless unless one also knows the area over which it is measured|date=February 2011}}{{cite web|title=GPS Spoofing Countermeasures |first1=Jon S |last1=Warner |first2=Roger G |last2=Johnston |url=http://www.homelandsecurity.org/bulletin/Dual%20Benefit/warner_gps_spoofing.html |date=December 2003 |url-status=dead |archive-url=https://web.archive.org/web/20120207185107/http://www.homelandsecurity.org/bulletin/Dual%20Benefit/warner_gps_spoofing.html |archive-date=February 7, 2012}} (This article was originally published as Los Alamos research paper [http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-03-6163 LAUR-03-6163])

10−16

|

|2{{e

16}}

|−127 dBm

|biomed: approximate theoretical minimum luminosity detectable by the human eye under perfect conditions

10−15{{Anchor|10-15}}

|femto- (fW)

|2.5{{e

15}}

|−116 dBm

|tech: minimum discernible signal at the antenna terminal of a good FM radio receiver

10−14

|

|1{{e

14}}

|−110 dBm

|tech: approximate lower limit of power reception on digital spread-spectrum cell phones

10−12{{Anchor|10-12}}

|pico- (pW)

|1{{e

12}}

|−90 dBm

|biomed: average power consumption of a human cell

rowspan="2" |10−11

| rowspan="2" |

|1.84{{e

11}}

|−77 dBm

|phys: power lost in the form of synchrotron radiation by a proton revolving in the Large Hadron Collider at 7000 GeVCERN. [https://edms.cern.ch/file/445830/5/Vol_1_Chapter_2.pdf Beam Parameters and Definitions".] Table 2.2. Retrieved September 13, 2008

2.9{{e
11}}

|−72 dBm

|astro: power per square meter received from Proxima Centauri, the closest star known

rowspan="2" |10−10

| rowspan="2" |

|1{{e

10}}

|−68 dBm

|astro: estimated total Hawking radiation power of all black holes in the observable universe.{{Cite web |date=2024-01-06 |title=HubbleSite: Black Holes: Gravity's Relentless Pull interactive: Encyclopedia |url=https://www.stsci.edu/~marel/black_holes/encyc_mod3_q7.html |access-date=2024-01-06 |archive-url=https://web.archive.org/web/20240106090830/https://www.stsci.edu/~marel/black_holes/encyc_mod3_q7.html |archive-date=January 6, 2024 }}10 M_sol BH Hawking radiation power: https://www.wolframalpha.com/input?i=hawking+radiation+calculate&assumption=%7B%22FS%22%7D+-%3E+%7B%7B%22BlackHoleHawkingRadiationPower%22%2C+%22P%22%7D%2C+%7B%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D%7D&assumption=%7B%22F%22%2C+%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D+-%3E%2210*solar+mass%22Fermi estimate: Mass of observable universe / mass of Milky Way ≈ 1e+12. Number of stars in the Milky Way ≈ 1e+11. Proportion of stars that evolve into a black hole ≈ 1e-3. Hawking radiation power of a 10 Solar mass black hole: ≈ 1e-30 W. 12 + 11 - 3 - 30 = 23 - 30 = –10.

1.5{{e
10}}

|−68 dBm

|biomed: power entering a human eye from a 100-watt lamp 1 km away

10−9{{Anchor|10-9}}

|nano- (nW)

|2–15{{e

9}}

|−57 dBm to −48 dBm

|tech: power consumption of 8-bit PIC microcontroller chips when in "sleep" mode

rowspan=2|10−6{{Anchor|10-6}}

|rowspan=2|micro- (μW)

|1{{e

6}}

|−30 dBm

|tech: approximate consumption of a quartz or mechanical wristwatch

3{{e
6}}

|−25 dBm

|astro: cosmic microwave background radiation per square meter

10−5

|

|5{{e

5}}

|−13 dBm

|biomed: sound power incident on a human eardrum at the threshold intensity for pain (500 mW/m2).

rowspan="3" |10−3{{Anchor|10-3}}

| rowspan="3" |milli- (mW)

|1.55{{e

3}}

|−4.7 dBm

|astro: power per square meter received from the Sun by Sedna at its aphelion

5{{e
3}}

|7 dBm

|tech: laser in a CD-ROM drive

5–10{{e
3}}

|7 dBm to 10 dBm

|tech: laser in a DVD player

10−2{{Anchor|10-2}}

|centi- (cW)

|7{{e

2}}

|18 dBm

|tech: antenna power in a typical consumer wireless router

rowspan="2" |10−1{{Anchor|10-1}}

| rowspan="2" |deci- (dW)

|1.2{{e

1}}

|21 dBm

|astro: total proton decay power of Earth, assuming the half life of protons to take on the value 1035 years.{{Cite journal |last1=Nath |first1=Pran |last2=Perez |first2=Pavel Fileviez |date=April 2007 |title=Proton stability in grand unified theories, in strings, and in branes |journal=Physics Reports |volume=441 |issue=5–6 |pages=191–317 |doi=10.1016/j.physrep.2007.02.010|arxiv=hep-ph/0601023 |bibcode=2007PhR...441..191N |s2cid=119542637 }}Calculated: https://www.wolframalpha.com/input?i=earth+mass%2Fproton+mass*ln2%2F%281e35+year%29*proton+mass*c%5E2

5{{e
1}}

|27 dBm

|tech: maximum allowed carrier output power of an FRS radio

1 to 10<sup>2</sup> W

class="wikitable"
Factor (watts)

! SI prefix

! Value (watts)

! Item

rowspan="7" |100

| rowspan="7" |W

|1

|tech: cellphone camera light{{cite web |title=EETimes - Driving LED lighting in mobile phones and PDAs |url=https://www.eetimes.com/driving-led-lighting-in-mobile-phones-and-pdas |website=EETimes |access-date=2 December 2021 |date=12 June 2008}}

1.508

|astro: power per square metre received from the Sun at Neptune's aphelion{{cite web |title= Solar irradiance (W/m2), Bulk Parameters, Neptune Fact Sheet, NASA NSSDCA |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html |website=NASA GSFC |access-date=8 June 2022 |date=23 Dec 2021}}

2

|tech: maximum allowed carrier power output of a MURS radio

4

|tech: the power consumption of an incandescent night light

4

|tech: maximum allowed carrier power output of a 10-meter CB radio

7

|tech: the power consumption of a typical Light-emitting diode (LED) light bulb

8

|tech: human-powered equipment using a hand crank.[http://apps.dtic.mil/dtic/tr/fulltext/u2/a433537.pdf dtic.mil – harvesting energy with hand-crank generators to support dismounted soldier missions], 2004-12-xx

rowspan=4|101{{Anchor|101}}

|rowspan=4|deca- (daW)

|1.4 × 101

|tech: the power consumption of a typical household compact fluorescent light bulb

2–4 × 101

|biomed: approximate power consumption of the human brain{{cite web|author=Glenn Elert |url=http://hypertextbook.com/facts/2001/JacquelineLing.shtml |title=Power of a Human Brain - The Physics Factbook |publisher=Hypertextbook.com |access-date=2018-09-13}}

3–4 × 101

|tech: the power consumption of a typical household fluorescent tube light

6 × 101

|tech: the power consumption of a typical household incandescent light bulb

rowspan="12" |102{{Anchor|102}}

| rowspan="12" |hecto- (hW)

|1 × 102

|biomed: approximate basal metabolic rate of an adult human body{{cite web|url=http://www.gearypacific.com/ComfortZone/14%20The%20People%20Load.pdf |access-date=March 17, 2008 |url-status=dead |archive-url=https://web.archive.org/web/20081217040211/http://www.gearypacific.com/ComfortZone/14%20The%20People%20Load.pdf |archive-date=December 17, 2008 |title=The Comfort Zone |author=Maury Tiernan |publisher=Geary Pacific Corporation|date=November 1997}}

1.2 × 102

|tech: electric power output of {{nowrap|1 m2}} solar panel in full sunlight (approx. 12% efficiency), at sea level

1.3 × 102

|tech: peak power consumption of a Pentium 4 CPU

2 × 102

|tech: stationary bicycle average power output[http://www.alternative-energy-news.info/pedal-a-watt-stationary-bicycle-generator/ alternative-energy-news.info – The Pedal-A-Watt Stationary Bicycle Generator], January 11, 2010[http://www.econvergence.net/The-Pedal-A-Watt-Bicycle-Generator-Stand-s/1820.htm econvergence.net – The Pedal-A-Watt Bicycle Generator Stand Buy one or build with detailed plans.], 2012

2.76 × 102

|astro: fusion power output of 1 cubic meter of volume of the Sun's core.{{Cite web |title=Is the power output at the core of the sun about the same as a compost pile (about 300 watts)? |url=https://astronomy.stackexchange.com/questions/51317/is-the-power-output-at-the-core-of-the-sun-about-the-same-as-a-compost-pile-abo |access-date=2024-01-06 |website=Astronomy Stack Exchange |language=en}}

2.9 × 102

|units: approximately 1000 BTU/hour

3 × 102

|tech: PC GPU Nvidia GeForce RTX 4080 peak power consumption{{cite web |last=Hagedoorn |first=Hilbert |date=November 15, 2022 |title=GeForce RTX 4080 Founder edition review - Hardware setup {{!}} Power consumption |url=https://www.guru3d.com/articles-pages/geforce-rtx-4080-founder-edition-review,6.html |access-date=March 3, 2023 |website=Guru3D.com |publisher=Guru3D}}

4 × 102

|tech: legal limit of power output of an amateur radio station in the United Kingdom

5 × 102

|biomed: power output (useful work plus heat) of a person working hard physically

{{nowrap|7.457 × 102}}

|units: 1 horsepower{{Cite book|title = DOE Fundamentals Handbook, Classical Physics|publisher = USDOE|year = 1992|pages = CP–05, Page 9|osti = 10170060}}

7.5 × 102

|astro: approximately the amount of sunlight falling on a square metre of the Earth's surface at noon on a clear day in March for northern temperate latitudes

9.09 × 102

|biomed: peak output power of a healthy human (non-athlete) during a 30-second cycle sprint at 30.1 degree Celsius.{{cite journal|last=Ball|first=D|author2=Burrows C |author3=Sargeant AJ |date=March 1999|title=Human power output during repeated sprint cycle exercise: the influence of thermal stress|journal=Eur J Appl Physiol Occup Physiol. |volume=79|issue=4|pages=360–6|pmid=10090637 |doi=10.1007/s004210050521|s2cid=9825954}}

10<sup>3</sup> to 10<sup>8</sup> W

class="wikitable
rowspan=8|103{{Anchor|103}}

|rowspan=8|kilo- (kW)

|1–3 × 103 W

|tech: heat output of a domestic electric kettle

1.1 × 103 W

|tech: power of a microwave oven

1.366 × 103 W

|astro: power per square meter received from the Sun at the Earth's orbit

1.5 × 103 W

|tech: legal limit of power output of an amateur radio station in the United States

up to 2 × 103 W

|biomed: approximate short-time power output of sprinting professional cyclists and weightlifters doing snatch lifts

2.4 × 103 W

|geo: average power consumption per person worldwide in 2008 (21,283 kWh/year)

3.3–6.6 × 103 W

|eco: average photosynthetic power output per square kilometer of ocean{{cite web|url=http://www.fao.org/docrep/w7241e/w7241e05.htm |title=Chapter 1 - Biological energy production |publisher=Fao.org |access-date=2018-09-13}}

3.6 × 103 W

|tech: synchrotron radiation power lost per ring in the Large Hadron Collider at 7000 GeV

rowspan=8|104

|rowspan=8|

|1–5 × 104 W

|tech: nominal power of clear channel AM{{cite web|url=https://www.fcc.gov/media/radio/am-clear-regional-local-channels|title=AM Station Classes, and Clear, Regional, and Local Channels|date=December 11, 2015}}

1.00 × 104 W

|eco: average power consumption per person in the United States in 2008 (87,216 kWh/year)

1.4 × 104 W

|tech: average power consumption of an electric car on EPA's Highway test schedule{{cite web|url=https://www.fueleconomy.gov/feg/fe_test_schedules.shtml|title=Detailed Fuel Economy Test Information|publisher=EPA|access-date=2019-02-17}}{{cite web|url=https://www.fueleconomy.gov/feg/download.shtml|title=Fuel Economy Data|publisher=EPA|access-date=2019-02-17}}

1.45 × 104 W

|astro: power per square metre received from the Sun at Mercury's orbit at perihelion

1.6–3.2 × 104 W

|eco: average photosynthetic power output per square kilometer of land

3 × 104 W

|tech: power generated by the four motors of GEN H-4 one-man helicopter

4–20 × 104 W

|tech: approximate range of peak power output of typical automobiles (50-250 hp)

5–10 × 104 W

|tech: highest allowed ERP for an FM band radio station in the United States{{cite web|url=https://www.fcc.gov/media/radio/fm-station-classes|title=FM Broadcast Station Classes and Service Contours|date=December 11, 2015}}

rowspan=3|105

|rowspan=3|

|1.67 × 105 W

|tech: power consumption of UNIVAC 1 computer

2.5–8 × 105 W

|tech: approximate range of power output of 'supercars' (300 to 1000 hp)

4.5 × 105 W

|tech: approximate maximum power output of a large 18-wheeler truck engine (600 hp)

rowspan="9" |106{{Anchor|106}}

| rowspan="9" |mega- (MW)

|1.3 × 106 W

|tech: power output of P-51 Mustang fighter aircraft

1.9 × 106 W

|astro: power per square meter potentially received by Earth at the peak of the Sun's red giant phase

2.0 × 106 W

|tech: peak power output of GE's standard wind turbine

2.4 × 106 W

|tech: peak power output of a Princess Coronation class steam locomotive (approx 3.3K EDHP on test) (1937)

2.5 × 106 W

|biomed: peak power output of a blue whale{{Citation needed|date=September 2024|reason=Lack of reliable source}}

3 × 106 W

|tech: mechanical power output of a diesel locomotive

4.4 × 106 W

|tech: total mechanical power output of Titanic's coal-fueled steam engines{{Cite web |date=2023-01-08 |title=The Titanic's engine was a pretty marvelous innovation |url=https://www.themanual.com/culture/how-the-titanic-engine-worked/ |access-date=2024-01-06 |website=The Manual |language=en}}

7 × 106 W

|tech: mechanical power output of a Top Fuel dragster

8 × 106 W

|tech: peak power output of the MHI Vestas V164, the world's largest offshore wind turbine

rowspan="7" |107

| rowspan="7" |

|1 × 107 W

|tech: highest ERP allowed for an UHF television station

1.03 × 107 W

|geo: electrical power output of Togo

1.22 × 107 W

|tech: approx power available to a Eurostar 20-carriage train

1.5 × 107 W

|tech: electrical power consumption of Sunway TaihuLight, the most powerful supercomputer in China

1.6 × 107 W

|tech: rate at which a typical gasoline pump transfers chemical energy to a vehicle

2.6 × 107 W

|tech: peak power output of the reactor of a Los Angeles-class nuclear submarine

7.5 × 107 W

|tech: maximum power output of one GE90 jet engine as installed on the Boeing 777

rowspan="7" |108

| rowspan="7" |

|1.04 × 108 W

|tech: power producing capacity of the Niagara Power Plant, the first electrical power plant in history

1.4 × 108 W

|tech: average power consumption of a Boeing 747 passenger aircraft

1.9 × 108 W

|tech: peak power output of a {{sclass|Nimitz|aircraft carrier}}

5 × 108 W

|tech: typical power output of a fossil fuel power station

9 × 108 W

|tech: electric power output of a CANDU nuclear reactor

9.59 × 108 W

|geo: average electrical power consumption of Zimbabwe in 1998

9.86 × 108 W

|astro: approximate solar power received by the dwarf planet Sedna at its aphelion (937 AU)

The productive capacity of electrical generators operated by utility companies is often measured in MW. Few things can sustain the transfer or consumption of energy on this scale; some of these events or entities include: lightning strikes, naval craft (such as aircraft carriers and submarines), engineering hardware, and some scientific research equipment (such as supercolliders and large lasers).

For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.

10<sup>9</sup> to 10<sup>14</sup> W

class="wikitable"
rowspan="7" |109{{Anchor|109}}

| rowspan="7" |giga- (GW)

|

1.3 × 109

|tech: electric power output of Manitoba Hydro Limestone hydroelectric generating station

2.074 × 109

|tech: peak power generation of Hoover Dam

2.1 × 109

|tech: peak power generation of Aswan Dam

3.4 × 109

|tech: estimated power consumption of the Bitcoin network in 2017{{cite news|author=Alex Hern |url=https://www.theguardian.com/technology/2017/nov/27/bitcoin-mining-consumes-electricity-ireland |title=Bitcoin mining consumes more electricity a year than Ireland | Technology |newspaper=The Guardian |access-date=2018-09-13}}

4.116 × 109

|tech: installed capacity of Kendal Power Station, the world's largest coal-fired power plant.

5.824 × 109

|tech: installed capacity of the Taichung Power Plant, the largest coal-fired power plant in Taiwan and fourth largest of its kind. It was the single most polluting power plant on Earth in 2009.{{Cite journal |last1=Grant |first1=Don |last2=Zelinka |first2=David |last3=Mitova |first3=Stefania |date=2021-08-24 |title=Reducing CO2emissions by targeting the world's hyper-polluting power plants* |url=https://iopscience.iop.org/article/10.1088/1748-9326/ac13f1 |journal=Environmental Research Letters |volume=16 |issue=9 |pages=094022 |doi=10.1088/1748-9326/ac13f1 |issn=1748-9326}}See bottom half of Table 2: "Top ten polluting power plants in 2018 and 2009"

7.965 × 109

|tech: installed capacity of the largest nuclear power plant, the Kashiwazaki-Kariwa Nuclear Power Plant, before it was permanently shut down in the wake of the Fukushima nuclear disaster.

rowspan="10" |1010

| rowspan="10" |

|1.17 × 1010

|tech: power produced by the Space Shuttle in liftoff configuration (9.875 GW from the SRBs; 1.9875 GW from the SSMEs.){{cite web|author=Glenn Elert |url=http://hypertextbook.com/facts/2001/StaverieBoundouris.shtml |title=Power of a Space Shuttle - The Physics Factbook |publisher=Hypertextbook.com |date=2013-02-11 |access-date=2018-09-13}}

1.26 × 1010

|tech: electrical power generation of the Itaipu Dam

1.27 × 1010

|geo: average electrical power consumption of Norway in 1998

2.25 × 1010

|tech: peak electrical power generation of the Three Gorges Dam, the power plant with the world's largest generating capacity of any type.{{Cite web |date=2024-01-06 |title=The 22.5GW Power Plant - What You Should Know About Three Gorges, China |url=https://blog.isa.org/the-22.5gw-power-plant-what-you-should-know-about-three-gorges-china |access-date=2024-01-06 |archive-url=https://web.archive.org/web/20240106071052/https://blog.isa.org/the-22.5gw-power-plant-what-you-should-know-about-three-gorges-china |archive-date=January 6, 2024 }}

2.24 × 1010

|tech: peak power of all German solar panels (at noon on a cloudless day), researched by the Fraunhofer ISE research institute in 2014{{cite web|author=Rachael Black |url=http://richarddawkins.net/2014/06/germany-can-now-produce-half-its-energy-from-solar/ |title=Germany can now produce half its energy from solar | Richard Dawkins Foundation |publisher=Richarddawkins.net |date=2014-06-23 |access-date=2018-09-13}}

5.027 × 1010

|tech: peak electrical power consumption of California Independent System Operator users between 1998 and 2018, recorded at 14:44 Pacific Time, July 24, 2006.{{cite web|url=http://www.caiso.com/Documents/CaliforniaISOPeakLoadHistory.pdf|title=California ISO Peak Load History 1998 through 2018}}

5.22 × 1010

|tech: China total nuclear power capacity as of 2022.{{Cite web |date=2024-01-06 |title=PRIS - Miscellaneous reports - Nuclear Share |url=https://pris.iaea.org/pris/worldstatistics/nuclearshareofelectricitygeneration.aspx |access-date=2024-01-06 |archive-url=https://web.archive.org/web/20240106100530/https://pris.iaea.org/pris/worldstatistics/nuclearshareofelectricitygeneration.aspx |archive-date=January 6, 2024 }}

5.5 × 1010

|tech: peak daily electrical power consumption of Great Britain in November 2008.{{cite web|url=http://www.nationalgrid.com/uk/Electricity/Data/Realtime/Demand/demand24.htm|title=National Grid electricity consumption statistics|access-date=November 27, 2008|archive-url=https://web.archive.org/web/20081205090334/http://www.nationalgrid.com/uk/Electricity/Data/Realtime/Demand/demand24.htm|archive-date=December 5, 2008|url-status=dead}}

7.31 × 1010

|tech: total installed power capacity of Turkey on December 31, 2015.{{cite web|url=http://www.teias.gov.tr/yukdagitim/kuruluguc.xls|title=Turkish Electricity Transmission Company's Installed Capacity Statistics}}

9.55 × 1010

|tech: United States total nuclear power capacity as of 2022.

rowspan="8" |1011

| rowspan="8" |

|{{nowrap|1.016 × 1011}}

|tech: peak electrical power consumption of France (February 8, 2012 at 7:00 pm)

1.12 × 1011

|tech: United States total installed solar capacity as of 2022.{{Cite web |date=2024-01-04 |title=Yearly electricity data |url=https://ember-climate.org/data-catalogue/yearly-electricity-data/ |access-date=2024-01-06 |website=Ember |language=en-US}}

1.41 × 1011

|tech: United States total wind turbine capacity in 2022.

1.66 × 1011

|tech: average power consumption of the first stage of the Saturn V rocket.{{Cite book

| title = Combustion Science and Engineering

| first = Kalyan | last = Annamalai |author2=Ishwar Kanwar Puri

| publisher = CRC Press

| year = 2006

| page = 851

| isbn = 978-0-8493-2071-2

}}{{cite web|url=https://commons.wikimedia.org/wiki/File:Saturn_v_schematic.jpg |title=File:Saturn v schematic.jpg - Wikimedia Commons |publisher=Commons.wikimedia.org |access-date=2018-09-13}}

3.66 × 1011

|tech: China total wind turbine capacity in 2022.

3.92 × 1011

|tech: China total installed solar capacity as of 2022.

7 × 1011

|biomed: humankind basal metabolic rate as of 2013 (7 billion people).

8.99 × 1011

|tech: worldwide wind turbine capacity at end of 2022.

rowspan="3" |1012{{Anchor|1012}}

| rowspan="3" |tera- (TW)

|1.062 × 1012

|tech: worldwide installed solar capacity at end of 2022.

2 × 1012

|astro: approximate power generated between the surfaces of Jupiter and its moon Io due to Jupiter's tremendous magnetic field.[https://science.nasa.gov/headlines/y2000/ast22may_1.htm] {{Webarchive|url=https://web.archive.org/web/20090529042249/http://science.nasa.gov/headlines/y2000/ast22may_1.htm|date=May 29, 2009}} – Nasa: Listening to shortwave radio signals from Jupiter

3.34 × 1012

|geo: average total (gas, electricity, etc.) power consumption of the US in 2005[http://www.eia.doe.gov/aer/txt/ptb0103.html U.S energy consumption by source, 1949–2005], Energy Information Administration. Retrieved May 25, 2007

rowspan="4" |1013

| rowspan="4" |

|2.04 × 1013

|tech: average rate of power consumption of humanity over 2022.{{Cite journal |last1=Ritchie |first1=Hannah |author1-link=Hannah Ritchie |last2=Rosado |first2=Pablo |last3=Roser |first3=Max |author3-link=Max Roser |date=2024-01-04 |title=Energy Production and Consumption |url=https://ourworldindata.org/energy-production-consumption |journal=Our World in Data}}

4.7 × 1013

|geo: average total heat flow at Earth's surface which originates from its interior.{{Cite journal |last1=Davies |first1=J. H. |last2=Davies |first2=D. R. |date=2010-02-22 |title=Earth's surface heat flux |journal=Solid Earth |language=en |volume=1 |issue=1 |pages=5–24 |doi=10.5194/se-1-5-2010 |bibcode=2010SolE....1....5D |issn=1869-9529|doi-access=free }} Main sources are roughly equal amounts of radioactive decay and residual heat from Earth's formation.{{cite book|author1=Donald L. Turcotte|author2=Gerald Schubert|title=Geodynamics|url=https://books.google.com/books?id=-nCHlVuJ4FoC&q=primordial&pg=PA286|date=25 March 2002|publisher=Cambridge University Press|isbn=978-0-521-66624-4}}

8.8 × 1013

|astro: luminosity per square meter of the hottest normal star known, WR 102

5–20 × 1013

|weather: rate of heat energy release by a hurricane{{Citation needed|date=January 2023}}

rowspan="5" |1014

| rowspan="5" |

|1.4 × 1014

|eco: global net primary production (= biomass production) via photosynthesis{{Cite web |url=https://energyeducation.ca/encyclopedia/Earth%27s_energy_flow |title=Earth's energy flow - Energy Education |website=energyeducation.ca |access-date=2019-08-05}}

2.9 × 1014

|tech: the power the Z machine reaches in 1 billionth of a second when it is fired{{Citation needed|date=January 2023}}

3 × 1014

|weather: Hurricane Katrina's rate of release of latent heat energy into the air.{{Cite web|title=ATMO336 - Fall 2005|url=http://www.atmo.arizona.edu/students/courselinks/spring07/atmo336s3/lectures/sec2/hurricanes4.html|access-date=2020-11-18|website=www.atmo.arizona.edu}}

3 × 1014

|tech: power reached by the extremely high-power Hercules laser from the University of Michigan.{{Citation needed|date=January 2023}}

4.6 × 1014

|geo: estimated rate of net global heating, evaluated as Earth's energy imbalance, from 2005 to 2019.{{cite journal |last1=Trenberth |first1=Kevin E. |last2=Cheng |first2=Lijing |title=A perspective on climate change from Earth's energy imbalance |date=4 July 2022 |journal=Environmental Research: Climate |volume=1 |number=1 |pages=3001 |doi=10.1088/2752-5295/ac6f74 |doi-access=free}}{{cite journal |last1=von Schuckman |first1=K. |last2=Cheng |first2=L. |last3=Palmer |first3=M. D. |last4=Hansen |first4=J. |last5=Tassone |first5=C. |last6=Aich |first6=V. |last7=Adusumilli |first7=S. |last8=Beltrami |first8=H. |last9=Boyer |first9=T. |last10=Cuesta-Valero |first10=F. J. |display-authors=4 |title=Heat stored in the Earth system: where does the energy go? |journal=Earth System Science Data |date=7 September 2020 |volume=12 |issue=3 |pages=2013–2041 |doi=10.5194/essd-12-2013-2020 |doi-access=free |bibcode=2020ESSD...12.2013V |hdl=20.500.11850/443809 |hdl-access=free }} The rate of ocean heat uptake approximately doubled over this period.{{cite journal |last1=Loeb |first1=Norman G. |last2=Johnson |first2=Gregory C. |last3=Thorsen |first3=Tyler J. |last4=Lyman |first4=John M. |last5=Rose |first5=Fred G. |last6=Kato |first6=Seiji |display-authors=4 |title=Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate |journal=Geophysical Research Letters |date=15 June 2021 |volume=48 |issue=13 |doi=10.1029/2021GL093047 |bibcode=2021GeoRL..4893047L |doi-access= |s2cid=236233508 }}

10<sup>15</sup> to 10<sup>26</sup> W

class="wikitable"
rowspan=4|1015{{Anchor|1015}}

|rowspan=4|peta-

|{{nowrap|~2 × 1.00 × 1015 W}}

|tech: Omega EP laser power at the Laboratory for Laser Energetics. There are two separate beams that are combined.

1.4 × 1015 W

|geo: estimated heat flux transported by the Gulf Stream.

5 × 1015 W

|geo: estimated net heat flux transported from Earth's equator and towards each pole. Value is a latitudinal maximum arising near 40° in each hemisphere.{{cite journal |last1=Trenberth |first1=Kevin E. |last2=Caron |first2=Julie E. |title=Estimates of Meridional Atmosphere and Ocean Heat Transports |journal=Journal of Climate |volume=14 |issue=16 |pages=3433–3443 |date=15 August 2001 |doi=10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2 |doi-access=free|bibcode=2001JCli...14.3433T }}{{cite journal |last1=Wunsch |first1=Carl |title=The Total Meridional Heat Flux and Its Oceanic and Atmospheric Partition |journal=Journal of Climate |volume=18 |issue=21 |pages=4374–4380 |date=1 November 2005 |doi=10.1175/JCLI3539.1 |doi-access=free|bibcode=2005JCli...18.4374W }}

7 × 1015 W

|tech: the world's most powerful laser in operation (claimed on February 7, 2019, by Extreme Light Infrastructure – Nuclear Physics (ELI-NP) at Magurele, Romania){{Cite web|title=Scientists create record-breaking 10-petawatt laser that can vaporize matter|url=https://www.techspot.com/news/79965-scientists-create-record-breaking-10-petawatt-laser-can.html|access-date=2020-11-24|website=TechSpot|date=May 7, 2019 |language=en-US}}

rowspan=2|1016

|rowspan=2|

|1.03 × 1016 W

|tech: world's most powerful laser pulses (claimed on October 24, 2017, by SULF of Shanghai Institute of Optics and Fine Mechanics).{{cite web|url=http://www.publicnow.com/view/C0B0BF3214D1260BA9FFCC63AC318507D3B95527?2017-10-27-02:30:06+01:00-xxx7249|title=Super Laser Sets Another Record For Peak Power|date=26 October 2017|publisher=Shanghai Municipal Government}}

1–10 × 1016 W

|tech: estimated total power output of a Type-I civilization on the Kardashev scale.{{Cite web |url=http://www.coseti.org/lemarch1.htm |title=Detectability of Extraterrestrial Technological Activities |first=Guillermo A |last=Lemarchand |publisher=Columbus Optical SETI Observatory |website=coseti.org |accessdate=23 October 2004 |archive-date=2019-03-18 |archive-url=https://web.archive.org/web/20190318193634/http://www.coseti.org/lemarch1.htm |url-status=live }}

rowspan="3" |1017

| rowspan="3" |

|1.73 × 1017 W

|astro: total power received by Earth from the Sun{{cite web |url=https://news.mit.edu/2011/energy-scale-part3-1026 |title=Shining brightly |author=Chandler, David L. |publisher=Massachusetts Institute of Technology |website=news.mit.edu |date=26 October 2011 |accessdate=31 January 2023}}

2 × 1017 W

|tech: planned peak power of Extreme Light Infrastructure laser[http://www.eli-beams.eu/science/lasers/ eli-beams.eu: Lasers] {{webarchive|url=https://web.archive.org/web/20150305003329/http://www.eli-beams.eu/science/lasers/ |date=March 5, 2015 }}

4.6 × 1017 W

|astro: total internal heat flux of Jupiter{{Cite journal |last1=Li |first1=Liming |last2=Jiang |first2=X. |last3=West |first3=R. A. |last4=Gierasch |first4=P. J. |last5=Perez-Hoyos |first5=S. |last6=Sanchez-Lavega |first6=A. |last7=Fletcher |first7=L. N. |last8=Fortney |first8=J. J. |last9=Knowles |first9=B. |last10=Porco |first10=C. C. |last11=Baines |first11=K. H. |last12=Fry |first12=P. M. |last13=Mallama |first13=A. |last14=Achterberg |first14=R. K. |last15=Simon |first15=A. A. |date=2018-09-13 |title=Less absorbed solar energy and more internal heat for Jupiter |journal=Nature Communications |language=en |volume=9 |issue=1 |pages=3709 |doi=10.1038/s41467-018-06107-2 |pmid=30213944 |pmc=6137063 |bibcode=2018NatCo...9.3709L |s2cid=52274616 |issn=2041-1723}}

1018{{Anchor|1018}}

|exa- (EW)

|

|In a keynote presentation, NIF & Photon Science Chief Technology Officer Chris Barty described the "Nexawatt" Laser, an exawatt (1,000-petawatt) laser concept based on NIF technologies, on April 13 at the SPIE Optics + Optoelectronics 2015 Conference in Prague. Barty also gave an invited talk on "Laser-Based Nuclear Photonics" at the SPIE meeting.{{cite web|url=https://lasers.llnl.gov/news/papers-presentations#barty |title=Papers and Presentations |publisher=Lasers.llnl.gov |date=2016-01-28 |access-date=2018-09-13}}

1021{{Anchor|1021}}

|zetta- (ZW)

|

|

1022

|

|5.31 × 1022 W

|astro: approximate luminosity of 2MASS J0523−1403, the least luminous star known.{{Cite journal |last1=Filippazzo |first1=Joseph C. |last2=Rice |first2=Emily L. |last3=Faherty |first3=Jacqueline |last4=Cruz |first4=Kelle L. |last5=Van Gordon |first5=Mollie M. |last6=Looper |first6=Dagny L. |date=2015-09-10 |title=Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime |journal=The Astrophysical Journal |volume=810 |issue=2 |pages=158 |doi=10.1088/0004-637X/810/2/158 |arxiv=1508.01767 |bibcode=2015ApJ...810..158F |s2cid=89611607 |issn=1538-4357}}

1023

|

|4.08 × 1023 W

|astro: approximate luminosity of Wolf 359

rowspan="2" |1024{{Anchor|1024}}

| rowspan="2" |yotta- (YW)

|5.3 × 1024 W

|tech: estimated peak power of the Tsar Bomba hydrogen bomb detonation{{cite web|author=Matt Ford |url=https://arstechnica.com/science/2006/09/5310/ |title=The biggest explosion in our solar system |website=Ars Technica |date=2006-09-15 |access-date=2018-09-13}}

9.8 × 1024 W

|astro: approximate luminosity of Sirius B, Sirius's white dwarf companion.{{Cite web |date=2024-01-06 |title=Sirius Data |url=http://vega.lpl.arizona.edu/sirius/A6.html |access-date=2024-01-06 |archive-url=https://web.archive.org/web/20240106101230/http://vega.lpl.arizona.edu/sirius/A6.html |archive-date=January 6, 2024 }}Calculated: L = Stefan-Boltzmann constant × (Sirius b surface temperature)^4 × 4pi × (radius)^2 = 5.67e-8 × 25200^4 × 4pi × (5.84e+6)^2 = 9.8e+24 W.

rowspan="4" |1026

| rowspan="4" |

|1 × 1026 W

|tech: power generating capacity of a Type-II civilization on the Kardashev scale.

1.87 × 1026 W

|astro: approximate luminosity of Tau Ceti, the nearest solitary G-type star.

3.828 × 1026 W

|astro: luminosity of the Sun,{{Cite web |title=The IAU Strategic Plan 2010-2020: Astronomy for Development |url=https://www.iau.org/static/resolutions/IAU2015_English.pdf |archive-url=https://web.archive.org/web/20240106080532/https://www.iau.org/static/resolutions/IAU2015_English.pdf |archive-date=January 6, 2024 |access-date=2024-01-06}} our home star

7.67 × 1026 W

|astro: approximate luminosity of Alpha Centauri, the closest (triple) star system.{{Cite journal |last1=Akeson |first1=Rachel |last2=Beichman |first2=Charles |last3=Kervella |first3=Pierre |last4=Fomalont |first4=Edward |last5=Benedict |first5=G. Fritz |date=2021-07-01 |title=Precision Millimeter Astrometry of the $\alpha$ Centauri AB System |journal=The Astronomical Journal |volume=162 |issue=1 |pages=14 |doi=10.3847/1538-3881/abfaff |doi-access=free |arxiv=2104.10086 |bibcode=2021AJ....162...14A |issn=0004-6256}}

1027

| rowspan="2" |ronna- (RW)

|9.77 × 1027 W

|astro: approximate luminosity of Sirius, the visibly brightest star as viewed from Earth.{{Cite journal |last1=Liebert |first1=James |last2=Young |first2=Patrick A. |last3=Arnett |first3=David |last4=Holberg |first4=J. B. |last5=Williams |first5=Kurtis A. |date=2005-09-01 |title=The Age and Progenitor Mass of Sirius B |journal=The Astrophysical Journal |volume=630 |issue=1 |pages=L69–L72 |doi=10.1086/462419 |arxiv=astro-ph/0507523 |bibcode=2005ApJ...630L..69L |s2cid=8792889 |issn=0004-637X}}

1028

|6.51 × 1028 W

|astro: approximate luminosity of Arcturus, a solar-mass red giant{{Cite journal |last1=Schroder |first1=Klaus-Peter |last2=Cuntz |first2=Manfred |date=April 2007 |title=A critical test of empirical mass loss formulae applied to individual giants and supergiants |journal=Astronomy & Astrophysics |volume=465 |issue=2 |pages=593–601 |doi=10.1051/0004-6361:20066633 |arxiv=astro-ph/0702172 |bibcode=2007A&A...465..593S |s2cid=55901104 |issn=0004-6361}}

Over 10<sup>27</sup> W

class="wikitable

| rowspan="2" |1030{{Anchor|1030}}

| rowspan="2" |quetta- (QW)

|1.99 × 1030 W

|astro: peak luminosity of the Sun in its thermally-pulsing, late AGB phase (≈5200x present){{Cite journal |last1=Sackmann |first1=I. -Juliana |last2=Boothroyd |first2=Arnold I. |last3=Kraemer |first3=Kathleen E. |date=1993-11-01 |title=Our Sun. III. Present and Future |url=https://ui.adsabs.harvard.edu/abs/1993ApJ...418..457S |journal=The Astrophysical Journal |volume=418 |pages=457 |doi=10.1086/173407 |bibcode=1993ApJ...418..457S |issn=0004-637X}}

4.1 × 1030 W

|astro: approximate luminosity of Canopus{{Cite journal |last1=Cruzalèbes |first1=P. |last2=Jorissen |first2=A. |last3=Rabbia |first3=Y. |last4=Sacuto |first4=S. |last5=Chiavassa |first5=A. |last6=Pasquato |first6=E. |last7=Plez |first7=B. |last8=Eriksson |first8=K. |last9=Spang |first9=A. |last10=Chesneau |first10=O. |date=2013-09-01 |title=Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER |journal=Monthly Notices of the Royal Astronomical Society |volume=434 |issue=1 |pages=437–450 |doi=10.1093/mnras/stt1037 |doi-access=free |arxiv=1306.3288 |issn=0035-8711}}

rowspan="2" |1031

| rowspan="2" |

|2.53 × 1031 W

|astro: approximate luminosity of the Beta Centauri triple star system{{Cite journal |last1=Shultz |first1=M. E. |last2=Wade |first2=G. A. |last3=Rivinius |first3=Th |last4=Alecian |first4=E. |last5=Neiner |first5=C. |last6=Petit |first6=V. |last7=Wisniewski |first7=J. P. |last8=MiMeS |first8=the |last9=Collaborations |first9=BinaMIcS |date=2019-05-11 |title=The Magnetic Early B-type Stars II: stellar atmospheric parameters in the era of Gaia |journal=Monthly Notices of the Royal Astronomical Society |volume=485 |issue=2 |pages=1508–1527 |doi=10.1093/mnras/stz416 |doi-access=free |arxiv=1902.02713 |issn=0035-8711}}

3.3 × 1031 W

|astro: approximate luminosity of Betelgeuse, a highly-evolved red supergiant

1032

|

|1.23 × 1032 W

|astro: approximate luminosity of Deneb

rowspan="3" |1033{{Anchor|1033}}

| rowspan="3" |

|1.26 × 1033 W

|astro: approximate luminosity of the Pistol Star, an LBV which emits in 10 seconds the Sun's annual energy output

1.79 × 1033 W

|astro: approximate luminosity of R136a1,{{Cite journal |last1=Kalari |first1=Venu M. |last2=Horch |first2=Elliott P. |last3=Salinas |first3=Ricardo |last4=Vink |first4=Jorick S. |last5=Andersen |first5=Morten |last6=Bestenlehner |first6=Joachim M. |last7=Rubio |first7=Monica |date=2022-08-01 |title=Resolving the Core of R136 in the Optical |journal=The Astrophysical Journal |volume=935 |issue=2 |pages=162 |doi=10.3847/1538-4357/ac8424 |doi-access=free |arxiv=2207.13078 |bibcode=2022ApJ...935..162K |issn=0004-637X}} a massive Wolf-Rayet star and the most luminous single star known

2.1 × 1033 W

|astro: approximate luminosity of the Eta Carinae system,{{Cite journal |last1=Mehner |first1=A. |last2=de Wit |first2=W.-J. |last3=Asmus |first3=D. |last4=Morris |first4=P. W. |last5=Agliozzo |first5=C. |last6=Barlow |first6=M. J. |last7=Gull |first7=T. R. |last8=Hillier |first8=D. J. |last9=Weigelt |first9=G. |date=October 2019 |title=Mid-infrared evolution of eta Car from 1968 to 2018 |journal=Astronomy & Astrophysics |volume=630 |pages=L6 |doi=10.1051/0004-6361/201936277 |arxiv=1908.09154 |s2cid=202149820 |issn=0004-6361}} a highly elliptical binary of two supergiant blue stars orbiting each other

1034

|

|4 × 1034 W

|tech: approximate power used by a type III civilization in the Kardashev scale.

1036{{Anchor|1036}}

|

|5.7 × 1036 W

|astro: approximate luminosity of the Milky Way galaxy{{Cite web |date=2024-01-06 |title=Galaxy Properties |url=https://lweb.cfa.harvard.edu/~dfabricant/huchra/seminar/galaxies/ |access-date=2024-01-06 |archive-url=https://web.archive.org/web/20240106080354/https://lweb.cfa.harvard.edu/~dfabricant/huchra/seminar/galaxies/ |archive-date=January 6, 2024 }}Calculated: 1.5e+10 L_sol * 3.828e+26 W/L_sol = 5.7e+36 W

rowspan="2" |1037

| rowspan="2" |

|2 × 1037 W

|astro: approximate luminosity of the Local Group, the volume enclosed by our gravitational cosmic horizon{{Cite journal |last=van den Bergh |first=Sidney |date=1999-01-01 |title=The local group of galaxies |url=https://ui.adsabs.harvard.edu/abs/1999A&ARv...9..273V |journal=Astronomy and Astrophysics Review |volume=9 |issue=3–4 |pages=273–318 |doi=10.1007/s001590050019 |bibcode=1999A&ARv...9..273V |issn=0935-4956}}Estimated to have an absolute magnitude of -22.

4 × 1037 W

|astro: approximate internal luminosity of the Sun for a few seconds as it undergoes a helium flash.{{Cite journal |last1=Deupree |first1=Robert G. |last2=Wallace |first2=Richard K. |date=1987-06-01 |title=The Core Helium Flash and Surface Abundance Anomalies |url=https://ui.adsabs.harvard.edu/abs/1987ApJ...317..724D |journal=The Astrophysical Journal |volume=317 |pages=724 |doi=10.1086/165319 |bibcode=1987ApJ...317..724D |issn=0004-637X}}Peak helium flash luminosity ≈ 100 billion times normal energy production.

1038

|

|2.2 × 1038 W

|astro: approximate luminosity of the extremely luminous supernova ASASSN-15lh{{Cite journal|last1=Dong|first1=Subo|last2=Shappee|first2=B. J.|last3=Prieto|first3=J. L.|last4=Jha|first4=S. W.|last5=Stanek|first5=K. Z.|last6=Holoien|first6=T. W.-S.|last7=Kochanek|first7=C. S.|last8=Thompson|first8=T. A.|last9=Morrell|first9=N.|last10=Thompson|first10=I. B.|last11=Basu|first11=U.|date=2016-01-15|title=ASASSN-15lh: A highly super-luminous supernova|url=https://www.science.org/doi/10.1126/science.aac9613|journal=Science|language=en|volume=351|issue=6270|pages=257–260|doi=10.1126/science.aac9613|issn=0036-8075|pmid=26816375|arxiv=1507.03010|bibcode=2016Sci...351..257D|hdl=10533/231850|s2cid=31444274}}{{Cite news|title=The Incomprehensible Power of a Supernova {{!}} RealClearScience|url=https://www.realclearscience.com/blog/2016/01/the_incomprehensible_power_of_a_supernova.html|access-date=2020-11-22|newspaper=Realclearscience |last1=Hartsfield |first1=Tom }}

rowspan="2" |1039{{Anchor|1039}}

| rowspan="2" |

|1 × 1039 W

|astro: average luminosity of a quasar

1.57 × 1039 W

|astro: approximate luminosity of 3C273, the brightest quasar seen from EarthCalculated as: Solar luminosity × 10^(0.4 × (Sun absolute magnitude - 3C 273 absolute magnitude)) = 3.828e+26 × 10^(0.4 × (4.83 - (- 26.73))) = 3.828e+26 × 4.1e+12 = 1.57e+39 W.

1040

|

|5 × 1040 W

|astro: approximate peak luminosity of the energetic fast blue optical transient CSS161010{{cite journal|last1=Coppejans|first1=D. L.|last2=Margutti|first2=R.|last3=Terreran|first3=G.|last4=Nayana|first4=A. J.|last5=Coughlin|first5=E. R.|last6=Laskar|first6=T.|last7=Alexander|first7=K. D.|last8=Bietenholz|first8=M.|last9=Caprioli|first9=D.|last10=Chandra|first10=P.|last11=Drout|first11=M.|title=A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy|journal=The Astrophysical Journal|year=2020|volume=895|issue=1|pages=L23|arxiv=2003.10503|doi=10.3847/2041-8213/ab8cc7|bibcode=2020ApJ...895L..23C|s2cid=214623364 |doi-access=free }}

1041

|

|1 × 1041 W

|astro: approximate luminosity of the most luminous quasars in our universe, e.g., APM 08279+5255 and HS 1946+7658.{{cite journal|last1=Riechers|first1=Dominik A.|last2=Walter|first2=Fabian|last3=Carilli|first3=Christopher L.|last4=Lewis|first4=Geraint F.|title=Imaging the Molecular Gas in Az= 3.9 Quasar Host Galaxy at 0."3 Resolution: a Central, Sub-kiloparsec Scale Star Formation Reservoir in Apm 08279+5255|journal=The Astrophysical Journal|volume=690|issue=1|year=2009|pages=463–485|issn=0004-637X|doi=10.1088/0004-637X/690/1/463|arxiv = 0809.0754|bibcode = 2009ApJ...690..463R|s2cid=13959993}}

rowspan=2|1042{{Anchor|1042}}

|rowspan=2|

|1.7 × 1042 W

|astro: approximate luminosity of the Laniakea Supercluster{{Cite journal |last1=Tully |first1=R. Brent |last2=Courtois |first2=Helene |last3=Hoffman |first3=Yehuda |last4=Pomarède |first4=Daniel |date=2014-09-04 |title=The Laniakea supercluster of galaxies |journal=Nature |volume=513 |issue=7516 |pages=71–73 |doi=10.1038/nature13674 |pmid=25186900 |arxiv=1409.0880 |bibcode=2014Natur.513...71T |s2cid=205240232 |issn=0028-0836}}Calculated. Estimated assuming Laniakea to be a sphere 160 Mpc in diameter, according to p.4 of cited paper:

Observable universe luminosity × (Laniakea Supercluster diameter / Observable universe diameter)^3 = 9.466e+48 W × (160 Mpc / 28.5 Gpc)^3 = 1.675e+42 ≈ 1.7e+42 W.

3 × 1042 W

|astro: approximate luminosity of an average gamma-ray burst{{cite journal|last1=Guetta|first1=Dafne|last2=Piran|first2=Tsvi|last3=Waxman|first3=Eli|title=The Luminosity and Angular Distributions of Long-Duration Gamma-Ray Bursts|journal=The Astrophysical Journal|volume=619|issue=1|year=2005|pages=412–419|issn=0004-637X|doi=10.1086/423125|arxiv = astro-ph/0311488|bibcode = 2005ApJ...619..412G|s2cid=14741044}}

1043

|

|2.2 × 1043 W

|astro: average stellar luminosity in one cubic gigalight-year of space

1045{{Anchor|1045}}

|

|

|

1046

|

|1 × 1046 W

|astro: record for maximum beaming-corrected intrinsic luminosity ever achieved by a gamma-ray burst (GRB 110918A){{cite journal|last1=Frederiks|first1=D. D.|last2=Hurley|first2=K.|last3=Svinkin|first3=D. S.|last4=Pal'shin|first4=V. D.|last5=Mangano|first5=V.|last6=Oates|first6=S.|last7=Aptekar|first7=R. L.|last8=Golenetskii|first8=S. V.|last9=Mazets|first9=E. P.|last10=Oleynik|first10=Ph. P.|last11=Tsvetkova|first11=A. E.|last12=Ulanov|first12=M. V.|last13=Kokomov|first13=A. A.|last14=Cline|first14=T. L.|last15=Burrows|first15=D. N.|last16=Krimm|first16=H. A.|last17=Pagani|first17=C.|last18=Sbarufatti|first18=B.|last19=Siegel|first19=M. H.|last20=Mitrofanov|first20=I. G.|last21=Golovin|first21=D.|last22=Litvak|first22=M. L.|last23=Sanin|first23=A. B.|last24=Boynton|first24=W.|last25=Fellows|first25=C.|last26=Harshman|first26=K.|last27=Enos|first27=H.|last28=Starr|first28=R.|last29=von Kienlin|first29=A.|last30=Rau|first30=A.|last31=Zhang|first31=X.|last32=Goldstein|first32=J.|title=The Ultraluminous GRB 110918A|journal=The Astrophysical Journal|volume=779|issue=2|year=2013|pages=151|issn=0004-637X|doi=10.1088/0004-637X/779/2/151|arxiv = 1311.5734|bibcode = 2013ApJ...779..151F|s2cid=118398826|display-authors=5}}

1047

|

|7.519 × 1047 W

|phys: Hawking radiation luminosity of a Planck mass black holeCalculated: https://www.wolframalpha.com/input?i=hawking+radiation+calculate&assumption=%7B%22FS%22%7D+-%3E+%7B%7B%22BlackHoleHawkingRadiationPower%22%2C+%22P%22%7D%2C+%7B%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D%7D&assumption=%7B%22F%22%2C+%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D+-%3E%22planck+mass%22

1048{{Anchor|1048}}

|

|9.5 × 1048 W

|astro: luminosity of the entire Observable universeCalculated. Assuming isotropicity in composition and identical age since Big Bang within cosmological horizon, expressed as:

Ordinary [baryonic] mass of observable universe / Ordinary mass of Milky Way × Luminosity of Milky Way.

L_total = 1.5e+53 kg / 4.6e+10 M_sol * 1.5e+10 L_sol = 9.466e+48 W ≈ 9.5e+48 W. ≈ 24.6 billion trillion solar luminosity.

1049

|

|3.6 × 1049 W

|astro: peak gravitational wave radiative power of GW150914, the merger event of two distant stellar-mass black holes. It is attributed to the first observation of gravitational waves.{{Cite web |title=GW150914: Factsheet |url=https://www.ligo.org/detections/GW150914/fact-sheet.pdf |archive-url=https://web.archive.org/web/20240106071732/https://www.ligo.org/detections/GW150914/fact-sheet.pdf |archive-date=January 6, 2024 |access-date=2024-01-06 |website=www.ligo.org}}

1052

|

|3.63 × 1052 W

|phys: the unit of power as expressed under the Planck units,\frac{c^5}{G} at which the definition of power under modern conceptualizations of physics breaks down. Equivalent to one Planck mass-energy per Planck time.

See also

Notes

{{reflist|group=note}}

References

{{reflist|colwidth=30em}}

{{Orders of magnitude}}

{{DEFAULTSORT:Orders Of Magnitude (Power)}}

Power

Category:Power (physics)