Orthogonal polynomials on the unit circle

In mathematics, orthogonal polynomials on the unit circle are families of polynomials that are orthogonal with respect to integration over the unit circle in the complex plane, for some probability measure on the unit circle. They were introduced by {{harvs|txt|last=Szegő|year1=1920|year2=1921|year3=1939}}.

Definition

Let \mu be a probability measure on the unit circle \mathbb{T} =\{z\in\mathbb{C} :|z|=1\} and assume \mu is nontrivial, i.e., its support is an infinite set. By a combination of the Radon-Nikodym

and Lebesgue decomposition theorems, any such measure can be uniquely

decomposed into

:d\mu =w(\theta) \frac{d\theta}{2\pi} + d\mu_s,

where d\mu_s is singular with respect to d\theta/2\pi and w \in L^{1}(\mathbb{T}) with wd\theta/2\pi the absolutely continuous part of d\mu.{{sfn|Simon|2005a|page=43}}

The orthogonal polynomials associated with \mu are defined as

:\Phi_n(z)=z^n + \text{lower order},

such that

:\int \bar{z}^j\Phi_n(z)\,d\mu(z) =0, \quad j = 0,1,\dots,n-1.

The Szegő recurrence

The monic orthogonal Szegő polynomials satisfy a recurrence relation of the form

:\Phi_{n+1}(z)=z\Phi_n(z)-\overline\alpha_n\Phi_n^*(z)

:\Phi_{n+1}^{\ast}(z)=\Phi_n^{\ast}(z)-\alpha_n z\Phi_n(z)

for n \geq 0 and initial condition \Phi_0=1, with

:\Phi_n^*(z)=z^n\overline{\Phi_n(1/\overline{z})}

and constants \alpha_n in the open unit disk \mathbb{D} = \{ z\in \mathbb{C} : |z|<1\} given by

:\alpha_n = -\overline{\Phi_{n+1}(0)}

called the Verblunsky coefficients. {{sfn|Simon|2010|page=44}} Moreover,

:\|\Phi_{n+1}\|^{2} = \prod_{j=0}^{n} (1-|\alpha_j|^2) = (1-|\alpha_n|^2)\|\Phi_n\|^2 .

Geronimus' theorem states that the Verblunsky coefficients associated with d\mu are the Schur parameters:{{sfn|Simon|2010|page=74}}

: \alpha_n(d\mu) = \gamma_n

=Verblunsky's theorem=

Verblunsky's theorem states that for any sequence of numbers \{\alpha_{j}^{(0)}\}_{j=0}^{\infty} in \mathbb{D} there is a unique nontrivial probability measure \mu on \mathbb{T} with \alpha_j(d\mu)=\alpha_j^{(0)}.{{sfn|Schmüdgen|2017|page=265}}

=Baxter's theorem=

Baxter's theorem states that the Verblunsky coefficients form an absolutely convergent series if and only if the moments of \mu form an absolutely convergent series and the weight function w is strictly positive everywhere.{{sfn|Simon|2005a|page=313}}

Szegő's theorem

For any nontrivial probability measure d\mu on \mathbb{T}, Verblunsky's form of Szegő's theorem states that

:\prod_{n = 0}^\infty(1-|\alpha_n|^2) = \exp\big(\frac{1}{2\pi}\int_0^{2\pi}\log w(\theta)\,d\theta\big).

The left-hand side is independent of d\mu_s but unlike Szegő's original version, where d\mu = d\mu_{ac}, Verblunsky's form does allow d\mu_s \neq 0 .{{sfn|Simon|2010|page=29}} Subsequently,

:\sum_{n = 0}^\infty |\alpha_n|^2 < \infty \;\iff\; \frac{1}{2\pi}\int_0^{2\pi}\log w(\theta)\,d\theta > -\infty.

One of the consequences is the existence of a mixed spectrum for discretized Schrödinger operators.{{sfn | Totik | 2016 | page=269}}

Rakhmanov's theorem

Rakhmanov's theorem states that if the absolutely continuous part w of the measure \mu is positive almost everywhere then the Verblunsky coefficients \alpha_n tend to 0.

Examples

The Rogers–Szegő polynomials are an example of orthogonal polynomials on the unit circle.

See also

Notes

{{Reflist}}

References

  • {{dlmf|id=18.33|title=Orthogonal Polynomials on the unit circle|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
  • {{cite book | last=Schmüdgen | first=Konrad | series= Graduate Texts in Mathematics|title=The Moment Problem | publisher=Springer International Publishing | publication-place=Cham | year=2017 | volume=277 | isbn=978-3-319-64545-2 | issn=0072-5285 | doi=10.1007/978-3-319-64546-9}}
  • {{cite book | last1=Simon | first1=Barry | author1-link=Barry Simon | title=Orthogonal polynomials on the unit circle. Part 1. Classical theory | publisher=American Mathematical Society | location=Providence, R.I. | series=American Mathematical Society Colloquium Publications | isbn=978-0-8218-3446-6 | mr=2105088 |year=2005a | volume=54}}
  • {{cite book | last1=Simon | first1=Barry | author1-link=Barry Simon | title=Orthogonal polynomials on the unit circle. Part 2. Spectral theory | publisher=American Mathematical Society | location=Providence, R.I. | series=American Mathematical Society Colloquium Publications | isbn=978-0-8218-3675-0 | mr=2105089 | year=2005b | volume=54}}
  • {{cite book | last =Simon| first =Barry | author-link=Barry Simon | title=Szegő's theorem and its descendants: spectral theory for L² perturbations of orthogonal polynomials| date=2010|publisher=Princeton University Press|isbn=978-0-691-14704-8}}
  • {{Citation | last1=Szegő | first1=Gábor | title=Beiträge zur Theorie der Toeplitzschen Formen | doi=10.1007/BF01199955 | year=1920 | journal=Mathematische Zeitschrift | issn=0025-5874 | volume=6 | issue=3–4 | pages=167–202| s2cid=118147030 | url=https://zenodo.org/record/1447413 }}
  • {{Citation | last1=Szegő | first1=Gábor | title=Beiträge zur Theorie der Toeplitzschen Formen | doi=10.1007/BF01279027 | year=1921 | journal=Mathematische Zeitschrift | issn=0025-5874 | volume=9 | issue=3–4 | pages=167–190| s2cid=125157848 | url=https://zenodo.org/record/1447419 }}
  • {{Citation | last1=Szegő | first1=Gábor | title=Orthogonal Polynomials | url=https://books.google.com/books?id=3hcW8HBh7gsC | publisher= American Mathematical Society | series=Colloquium Publications | isbn=978-0-8218-1023-1 | mr=0372517 | year=1995 |orig-date=1939 | volume=XXIII}}
  • {{cite journal | last=Totik | first=V. | title=Barry Simon and the János Bolyai International Mathematical Prize | journal=Acta Mathematica Hungarica | publisher=Springer Science and Business Media LLC | volume=149 | issue=2 | year=2016 | issn=0236-5294 | doi=10.1007/s10474-016-0618-x | pages=263–273| s2cid=254236846 | url=https://publicatio.bibl.u-szeged.hu/9443/1/simon.pdf }}

Category:Orthogonal polynomials