Orthotransversal

{{Short description|One of triangle line}}

File:Orthotransversal.png

In Euclidean geometry, the orthotransversal of a point is the line defined as follows.{{Cite journal |last=Gibert |first=Bernard |date=2003 |title=Orthocorrespondence and Orthopivotal Cubics |url=http://www.bernard-gibert.fr/files/Resources/volume3a.pdf |journal=Forum Geometricorum |volume=3}}{{Cite web |last=Eliud Lozada |first=César |title=Extended glossary |url=https://faculty.evansville.edu/ck6/encyclopedia/ext_glossary.html |website=faculty.evansville.edu}}

For a triangle {{Mvar|ABC}} and a point {{Mvar|P}}, three orthotraces, intersections of lines {{Mvar|BC, CA, AB}} and perpendiculars of {{Mvar|AP, BP, CP}} through {{Mvar|P}} respectively are collinear. The line which includes these three points is called the orthotransversal of {{Mvar|P}}. In 1933, Indian mathematician K. Satyanarayana called this line an "ortho-line".{{Cite journal |title=On Conics Having a Common Self-conjugate Triangle|year=1933|journal=The Mathematics Student |last=Satyanarayana |first=K. |url=https://dspace.bcu-iasi.ro/handle/123456789/44183 |volume=5 |pages=19}}

Existence of it can proved by various methods such as a pole and polar, the dual of {{Interlanguage link|Desargues' involution theorem|ru|Теорема Дезарга об инволюции}} , and the Newton line theorem.{{Cite web |last=Cohl |first=Telv |title=Extension of orthotransversal |url=https://artofproblemsolving.com/community/q1h507541p2851090 |website=AoPS}}{{Cite web |title=Existence of Orthotransversal |url=https://artofproblemsolving.com/community/q1h2745598p23957981 |website=AoPS}}

The tripole of the orthotransversal is called the orthocorrespondent of {{Mvar|P}},{{Cite journal |last=Bernard |first=Gibert |date=2003 |title=Antiorthocorrespondents of Circumconics |journal=Forum Geometricorum |volume=3}}{{Cite journal |last1=Gibert |first1=Bernard |last2=van Lamoen |first2=Floor |date=2003 |title=The Parasix Configuration and Orthocorrespondence |journal=Forum Geometricorum |volume=3 |pages=173}} And the transformation {{Mvar|P}} → {{Math|P{{sup|⊥}}}}, the orthocorrespondent of {{Mvar|P}} is called the orthocorrespondence.{{Cite journal |last=Evers |first=Manfred |date=2012 |title=Generalizing Orthocorrespondence |journal=Forum Geometricorum |volume=12}}

Example

  • The orthotransversal of the Feuerbach point is the OI line.{{Cite web |last1=Li4 |last2=S⊗ |last3=和輝 |title=幾何引理維基 |url=https://lii4.github.io/Geometry_Lemma_Wiki.pdf |language=zh}}
  • The orthotransversal of the Jerabek center is the Euler line.
  • Orthocorrespondents of Fermat points are themselves.{{Cite web |last=dagezjm |title=Pedal triangle |url=https://artofproblemsolving.com/community/q1h2175301p17775874 |website=AoPS}}
  • The orthocorrespondent of the Kiepert center X(115) is the focus of the Kiepert parabola X(110).

Properties

  • There are exactly two points which share the orthoccorespondent.Mathworld Orthocorrespondent. This pair is called the antiorthocorrespondents.
  • The orthotransversal of a point on the circumcircle of the reference triangle {{Mvar|ABC}} passes through the circumcenter of {{Mvar|ABC}}. Furthermore, the Steiner line, the orthotransversal, and the trilinear polar are concurrent.{{Cite web |last=Li4 |title=圓錐曲線 |url=https://lii4.github.io/Conic.pdf |language=zh}}
  • The orthotransversals of a point P on the Euler line is perpendicular to the line through the isogonal conjugate and the anticomplement of P.{{Cite web |last1=Li4 |last2=S |title=張志煥截線 |url=https://permutation-chang.github.io/Permutationline.pdf |language=zh}}
  • The orthotransversal of the nine-point center is perpendicular to the Euler line of the tangential triangle.{{Cite web |last=S |title=正交截線 |url=https://permutation-chang.github.io/Orthotransversal.pdf |language=zh}}
  • For the quadrangle {{Mvar|ABCD}}, 4 orthotransversals for each component triangles and each remaining vertexes are concurrent.{{Cite web |title=QA-Tf14: QA-Orthotransversal Point |url=https://chrisvantienhoven.nl/qa-items/qa-transformations/qa-tf14 |access-date=2024-11-02 |website=ENCYCLOPEDIA OF QUADRI-FIGURES (EQF)}}
  • Barycentric coordinates of the orthocorrespondent of {{Math|P(p: q: r)}} are

p(-pS_A+qS_B+rS_C)+a^2qr:q(pS_A-qS_B+rS_C)+b^2rp:r(pS_A+qS_B-rS_C)+c^2pq,

where {{Mvar|S{{sub|A}},S{{sub|B}},S{{sub|C}}}} are Conway notation.

Orthopivotal cubic

The Locus of points {{Mvar|P}} that {{Math|P, P{{sup|⊥}}}}, and {{Mvar|Q}} are collinear is a cubic curve. This is called the orthopivotal cubic of {{Mvar|Q}}, {{Math|O(Q)}}.{{Cite web |title=Orthopivotal Cubics |url=http://www.bernard-gibert.fr/gloss/orthopivotalcubi.html |website=Catalogue of Triangle Cubics}} Every orthopivotal cubic passes through two Fermat points.

= Example =

  • {{Math|O(X{{sub|2}})}} is the line at infinity and the Kiepert hyperbola.
  • {{Math|O(X{{sub|3}})}} is the Neuberg cubic.{{Cite web |last=Gibert |first=Bernard |title=Neuberg Cubics |url=http://bernard-gibert.fr/files/Resources/neubergs.pdf}}
  • The orthopivotal cubic of the vertex is the isogonal image of the Apollonius circle (the Apollonian strophoid{{Cite web |title=K053 |url=http://bernard-gibert.fr/Exemples/k053.html |website=Cubic in Triangle Plane}}).

See also

Notes

{{Reflist}}

References

  • {{cite arXiv|eprint=0807.1131 |last1=Pohoata |first1=Cosmin |last2=Zajic |first2=Vladimir |title=Generalization of the Apollonius Circles |date=2008 |class=math.HO }}
  • {{cite arXiv|eprint=1908.11134 |last1=Evers |first1=Manfred |title=On the Geometry of a Triangle in the Elliptic and in the Extended Hyperbolic Plane |date=2019 |class=math.MG }}