Pöschl–Teller potential
In mathematical physics, a Pöschl–Teller potential, named after the physicists Herta Pöschl{{Cite web |url=https://e-reports-ext.llnl.gov/pdf/376159.pdf |title="Edward Teller Biographical Memoir." by Stephen B. Libby and Andrew M. Sessler, 2009 (published in Edward Teller Centennial Symposium: modern physics and the scientific legacy of Edward Teller, World Scientific, 2010. |access-date=2011-11-29 |archive-url=https://web.archive.org/web/20170118171614/https://e-reports-ext.llnl.gov/pdf/376159.pdf |archive-date=2017-01-18 |url-status=dead }} (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.
Definition
In its symmetric form is explicitly given by{{Cite journal | last1 = Pöschl | first1 = G. | last2 = Teller | first2 = E. | doi = 10.1007/BF01331132 | title = Bemerkungen zur Quantenmechanik des anharmonischen Oszillators | journal = Zeitschrift für Physik | volume = 83 | issue = 3–4 | pages = 143–151 | year = 1933 |bibcode = 1933ZPhy...83..143P | s2cid = 124830271 }} Image:Poschl-Teller_potential.svg
:
V(x) =-\frac{\lambda(\lambda+1)}{2}\mathrm{sech}^2(x)
and the solutions of the time-independent Schrödinger equation
:
-\frac{1}{2}\psi''(x)+ V(x)\psi(x)=E\psi(x)
with this potential can be found by virtue of the substitution , which yields
:
\left[(1-u^2)\psi'(u)\right]'+\lambda(\lambda+1)\psi(u)+\frac{2E}{1-u^2}\psi(u)=0
.
Thus the solutions are just the Legendre functions with , and , . Moreover, eigenvalues and scattering data can be explicitly computed.Siegfried Flügge Practical Quantum Mechanics (Springer, 1998) In the special case of integer , the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg–De Vries equation.{{Cite journal | last1 = Lekner | first1 = John | doi = 10.1119/1.2787015 | title = Reflectionless eigenstates of the sech2 potential | journal = American Journal of Physics | volume = 875 | issue = 12 | pages = 1151–1157 | year = 2007|bibcode = 2007AmJPh..75.1151L }}
The more general form of the potential is given by
:
V(x) =-\frac{\lambda(\lambda+1)}{2}\mathrm{sech}^2(x) - \frac{\nu(\nu+1)}{2}\mathrm{csch}^2(x) .
Rosen–Morse potential
A related potential is given by introducing an additional term:{{Cite journal|last1=Barut|first1=A. O.|last2=Inomata|first2=A.|last3=Wilson|first3=R.|date=1987|title=Algebraic treatment of second Poschl-Teller, Morse-Rosen and Eckart equations|url=http://stacks.iop.org/0305-4470/20/i=13/a=017|journal=Journal of Physics A: Mathematical and General|language=en|volume=20|issue=13|pages=4083|doi=10.1088/0305-4470/20/13/017|issn=0305-4470|bibcode=1987JPhA...20.4083B}}
:
V(x) =-\frac{\lambda(\lambda+1)}{2}\mathrm{sech}^2(x) - g \tanh x.
See also
References list
{{Reflist}}
External links
- [http://demonstrations.wolfram.com/EigenstatesForPoeschlTellerPotentials/ Eigenstates for Pöschl-Teller Potentials]
{{DEFAULTSORT:Poschl-Teller Potential}}
Category:Quantum mechanical potentials
{{quantum-stub}}
{{math-physics-stub}}