P-adic valuation#p-adic absolute value

{{Short description|Highest power of p dividing a given number}}

{{DISPLAYTITLE:{{mvar|p}}-adic valuation}}

In number theory, the {{nowrap|{{mvar|p}}-adic}} valuation or {{mvar|p}}-adic order of an integer {{mvar|n}} is the exponent of the highest power of the prime number {{mvar|p}} that divides {{mvar|n}}.

It is denoted \nu_p(n).

Equivalently, \nu_p(n) is the exponent to which p appears in the prime factorization of n.

The P-adic numberadic valuation is a valuation and gives rise to an analogue of the usual absolute value.

Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers \mathbb{R}, the completion of the rational numbers with respect to the p-adic absolute value results in the p-adic number \mathbb{Q}_p.

{{cite book

| first1= David S.|last1= Dummit

|first2=Richard M. |last2=Foote

| year = 2003

| title = Abstract Algebra

| edition = 3rd

| publisher = Wiley

| isbn = 0-471-43334-9

| pages = 758–759

}}

Image:2adic12480.svg in decimal. Zero has an infinite valuation.]]

Definition and properties

Let {{mvar|p}} be a prime number.

=Integers=

The {{mvar|p}}-adic valuation of an integer n is defined to be

:

\nu_p(n)=

\begin{cases}

\mathrm{max}\{k \in \mathbb{N}_0 : p^k \mid n\} & \text{if } n \neq 0\\

\infty & \text{if } n=0,

\end{cases}

where \mathbb{N}_0 denotes the set of natural numbers (including zero) and m \mid n denotes divisibility of n by m. In particular, \nu_p is a function \nu_p \colon \mathbb{Z} \to \mathbb{N}_0 \cup\{\infty\} .{{cite book|last1=Ireland |first1=K. |last2=Rosen |first2=M. |date=2000 |title=A Classical Introduction to Modern Number Theory |publisher=Springer-Verlag |location=New York |page=3}}{{ISBN needed}}

For example, \nu_2(-12) = 2, \nu_3(-12) = 1, and \nu_5(-12) = 0 since |{-12}| = 12 = 2^2 \cdot 3^1 \cdot 5^0.

The notation p^k \parallel n is sometimes used to mean k = \nu_p(n).{{Cite book |last1=Niven |first1=Ivan |author1-link=Ivan M. Niven |last2=Zuckerman |first2=Herbert S. |last3=Montgomery |first3=Hugh L. |author3-link=Hugh Lowell Montgomery |title=An Introduction to the Theory of Numbers |date=1991 |publisher=John Wiley & Sons |edition=5th |isbn=0-471-62546-9 |page=4}}

If n is a positive integer, then

:\nu_p(n) \leq \log_p n;

this follows directly from n \geq p^{\nu_p(n)}.

=Rational numbers=

The {{mvar|p}}-adic valuation can be extended to the rational numbers as the function

:\nu_p : \mathbb{Q} \to \mathbb{Z} \cup\{\infty\} with the usual order relation, namely

:\infty > n,

and rules for arithmetic operations,

:\infty + n = n + \infty = \infty,

on the extended number line.{{cite book|last1=Khrennikov |first1=A. |last2=Nilsson |first2=M. |date=2004 |title={{mvar|p}}-adic Deterministic and Random Dynamics |publisher=Kluwer Academic Publishers |page=9}}{{ISBN needed}}

defined by

:

\nu_p\left(\frac{r}{s}\right)=\nu_p(r)-\nu_p(s).

For example, \nu_2 \bigl(\tfrac{9}{8}\bigr) = -3 and \nu_3 \bigl(\tfrac{9}{8}\bigr) = 2 since \tfrac{9}{8} = 2^{-3}\cdot 3^2.

Some properties are:

:\nu_p(r\cdot s) = \nu_p(r) + \nu_p(s)

:\nu_p(r+s) \geq \min\bigl\{ \nu_p(r), \nu_p(s)\bigr\}

Moreover, if \nu_p(r) \neq \nu_p(s), then

:\nu_p(r+s)= \min\bigl\{ \nu_p(r), \nu_p(s)\bigr\}

where \min is the minimum (i.e. the smaller of the two).

= Formula for the {{mvar|p}}-adic valuation of Integers =

Legendre's formula shows that \nu_p(n!)=\sum_{i=1}^{\infty{}}{\left\lfloor{\frac{n}{p^i}}\right\rfloor{}}.

For any positive integer {{mvar|n}}, n = \frac{n!}{(n-1)!} and so \nu_p(n)=\nu_p(n!)-\nu_p((n-1)!).

Therefore, \nu{}_p(n)=\sum_{i=1}^{\infty{}}{\bigg(\left\lfloor{\frac{n}{p^i}}\right\rfloor{}-\left\lfloor{\frac{n-1}{p^i}}\right\rfloor{}\bigg)}.

This infinite sum can be reduced to \sum_{i=1}^{\lfloor{\log_p{(n)}\rfloor{}}}{\bigg(\left\lfloor{\frac{n}{p^i}}\right\rfloor{}-\left\lfloor{\frac{n-1}{p^i}}\right\rfloor{}\bigg)}.

This formula can be extended to negative integer values to give:

\nu{}_p(n) =\sum_{i=1}^{\lfloor{\log_p{(|n|)}\rfloor{}}}{\bigg(\left\lfloor{\frac

n
{p^i}}\right\rfloor{}-\left\lfloor{\frac{|n|-1}{p^i}}\right\rfloor{}\bigg)}

{{mvar|p}}-adic absolute value

{{anchor|p-adic norm}}

The {{mvar|p}}-adic absolute value (or {{mvar|p}}-adic norm,{{cite book

| last = Murty | first = M. Ram

| doi = 10.1007/978-1-4757-3441-6

| isbn = 0-387-95143-1

| mr = 1803093

| pages = 147–148

| publisher = Springer-Verlag, New York

| series = Graduate Texts in Mathematics

| title = Problems in analytic number theory

| volume = 206

| year = 2001}} though not a norm in the sense of analysis) on \mathbb{Q} is the function

:|\cdot|_p \colon \Q \to \R_{\ge 0}

defined by

:|r|_p = p^{-\nu_p(r)} .

Thereby, |0|_p = p^{-\infty} = 0 for all p and

for example, |{-12}|_2 = 2^{-2} = \tfrac{1}{4} and \bigl|\tfrac{9}{8}\bigr|_2 = 2^{-(-3)} = 8 .

The {{mvar|p}}-adic absolute value satisfies the following properties.

:

class="wikitable"
Non-negativity|r|_p \geq 0
Positive-definiteness|r|_p = 0 \iff r = 0
Multiplicativity|r s|_p = |r|_p|s|_p
Non-Archimedean|r+s|_p \leq \max\left(|r|_p, |s|_p\right)

From the multiplicativity |r s|_p = |r|_p|s|_p it follows that |1|_p=1=|-1|_p for the roots of unity 1 and -1 and consequently also |{-r}|_p = |r|_p .

The subadditivity |r+s|_p \leq |r|_p + |s|_p follows from the non-Archimedean triangle inequality |r+s|_p \leq \max\left(|r|_p, |s|_p\right).

The choice of base {{mvar|p}} in the exponentiation p^{-\nu_p(r)} makes no difference for most of the properties, but supports the product formula:

:\prod_{0, p} |r|_p = 1

where the product is taken over all primes {{mvar|p}} and the usual absolute value, denoted |r|_0. This follows from simply taking the prime factorization: each prime power factor p^k contributes its reciprocal to its {{mvar|p}}-adic absolute value, and then the usual Archimedean absolute value cancels all of them.

A metric space can be formed on the set \mathbb{Q} with a (non-Archimedean, translation-invariant) metric

:d \colon \Q \times \Q \to \R_{\ge 0}

defined by

:d(r,s) = |r-s|_p .

The completion of \mathbb{Q} with respect to this metric leads to the set \mathbb{Q}_p of {{mvar|p}}-adic numbers.

See also

References