Padovan polynomials
{{onesource|date=May 2024}}
In mathematics, Padovan polynomials are a generalization of Padovan sequence numbers. These polynomials are defined by:{{Cite web |title=PADOVAN POLYNOMIALS MATRIX |url=https://www.researchgate.net/publication/376952758 |page=4}}
:
1, &\mbox{if }n=1\\
0, &\mbox{if }n=2\\
x, &\mbox{if }n=3\\
xP_{n-2}(x)+P_{n-3}(x),&\mbox{if } n\ge4.
\end{cases}
The first few Padovan polynomials are:
:
:
:
:
:
:
:
:
:
:
:
The Padovan numbers are recovered by evaluating the polynomials Pn−3(x) at x = 1.
Evaluating Pn−3(x) at x = 2 gives the nth Fibonacci number plus (−1)n. {{OEIS|id=A008346}}
The ordinary generating function for the sequence is
: