Padovan polynomials

{{onesource|date=May 2024}}

In mathematics, Padovan polynomials are a generalization of Padovan sequence numbers. These polynomials are defined by:{{Cite web |title=PADOVAN POLYNOMIALS MATRIX |url=https://www.researchgate.net/publication/376952758 |page=4}}

:P_n(x) = \begin{cases}

1, &\mbox{if }n=1\\

0, &\mbox{if }n=2\\

x, &\mbox{if }n=3\\

xP_{n-2}(x)+P_{n-3}(x),&\mbox{if } n\ge4.

\end{cases}

The first few Padovan polynomials are:

:P_1(x)=1 \,

:P_2(x)=0 \,

:P_3(x)=x \,

:P_4(x)=1 \,

:P_5(x)=x^2 \,

:P_6(x)=2x \,

:P_7(x)=x^3+1 \,

:P_8(x)=3x^2 \,

:P_9(x)=x^4+3x \,

:P_{10}(x)=4x^3+1\,

:P_{11}(x)=x^5+6x^2.\,

The Padovan numbers are recovered by evaluating the polynomials Pn−3(x) at x = 1.

Evaluating Pn−3(x) at x = 2 gives the nth Fibonacci number plus (−1)n. {{OEIS|id=A008346}}

The ordinary generating function for the sequence is

: \sum_{n=1}^\infty P_n(x) t^n = \frac{t}{1 - x t^2 - t^3} .

See also

References

{{reflist}}

Category:Polynomials

{{polynomial-stub}}