Palatini identity
{{short description|Variation of the Ricci tensor with respect to the metric.}}
In general relativity and tensor calculus, the Palatini identity is
:
where denotes the variation of Christoffel symbols and indicates covariant differentiation.{{citation|title=Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades|last=Christoffel|first=E.B.|author-link=Elwin Bruno Christoffel|journal=Journal für die reine und angewandte Mathematik|volume=B. 70|pages=46–70|year=1869|url=http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002153882&IDDOC=266356}}
The "same" identity holds for the Lie derivative . In fact, one has
:
where denotes any vector field on the spacetime manifold .
Proof
The Riemann curvature tensor is defined in terms of the Levi-Civita connection as
: .
Its variation is
:
\delta{R^\rho}_{\sigma\mu\nu} =
\partial_\mu \delta\Gamma^\rho_{\nu\sigma} - \partial_\nu \delta\Gamma^\rho_{\mu\sigma} + \delta\Gamma^\rho_{\mu\lambda} \Gamma^\lambda_{\nu\sigma} + \Gamma^\rho_{\mu\lambda} \delta\Gamma^\lambda_{\nu\sigma} - \delta\Gamma^\rho_{\nu\lambda} \Gamma^\lambda_{\mu\sigma} - \Gamma^\rho_{\nu\lambda} \delta\Gamma^\lambda_{\mu\sigma}.
While the connection is not a tensor, the difference between two connections is, so we can take its covariant derivative
:
\nabla_\mu \delta \Gamma^\rho_{\nu\sigma} =
\partial_\mu \delta \Gamma^\rho_{\nu\sigma} + \Gamma^\rho_{\mu\lambda} \delta \Gamma^\lambda_{\nu\sigma} - \Gamma^\lambda_{\mu\nu} \delta \Gamma^\rho_{\lambda\sigma} - \Gamma^\lambda_{\mu\sigma} \delta \Gamma^\rho_{\nu\lambda}.
Solving this equation for and substituting the result in , all the -like terms cancel, leaving only
:
\delta{R^\rho}_{\sigma\mu\nu} =
\nabla_\mu \delta\Gamma^\rho_{\nu\sigma} - \nabla_\nu \delta\Gamma^\rho_{\mu\sigma}.
Finally, the variation of the Ricci curvature tensor follows by contracting two indices, proving the identity
:
\delta R_{\sigma\nu} = \delta {R^\rho}_{\sigma\rho\nu} =
\nabla_\rho \delta \Gamma^\rho_{\nu\sigma} - \nabla_\nu \delta \Gamma^\rho_{\rho\sigma}.
See also
Notes
{{Reflist}}
References
- {{citation
|author-first=Attilio
|author-last=Palatini
|author-link =Attilio Palatini
|year=1919
|title=Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton
|trans-title=Invariant deduction of the gravitanional equations from the principle of Hamilton
|journal=Rendiconti del Circolo Matematico di Palermo
|series=1
|language=Italian
|volume=43
|issue=
|pages=203–212
|url=https://link.springer.com/article/10.1007/BF03014670
|doi=10.1007/BF03014670
|jfm=
|s2cid=121043319
}} [English translation by R. Hojman and C. Mukku in P. G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980)]
- {{citation
|author-first=Michael
|author-last=Tsamparlis
|year=1978
|title=On the Palatini method of Variation
|journal=Journal of Mathematical Physics
|series=
|volume=19
|issue=3
|pages=555–557
|url=https://aip.scitation.org/doi/10.1063/1.523699
|doi=10.1063/1.523699
|bibcode = 1978JMP....19..555T
|jfm=
}}