Parabolic Lie algebra

{{inline |date=May 2024}}

In algebra, a parabolic Lie algebra \mathfrak p is a subalgebra of a semisimple Lie algebra \mathfrak g satisfying one of the following two conditions:

These conditions are equivalent over an algebraically closed field of characteristic zero, such as the complex numbers. If the field \mathbb F is not algebraically closed, then the first condition is replaced by the assumption that

  • \mathfrak p\otimes_{\mathbb F}\overline{\mathbb F} contains a Borel subalgebra of \mathfrak g\otimes_{\mathbb F}\overline{\mathbb F}

where \overline{\mathbb F} is the algebraic closure of \mathbb F.

Examples

For the general linear Lie algebra \mathfrak{g}=\mathfrak{gl}_n(\mathbb F), a parabolic subalgebra is the stabilizer of a partial flag of \mathbb F^n, i.e. a sequence of nested linear subspaces. For a complete flag, the stabilizer gives a Borel subalgebra. For a single linear subspace \mathbb F^k\subset \mathbb F^n, one gets a maximal parabolic subalgebra \mathfrak p, and the space of possible choices is the Grassmannian \mathrm{Gr}(k,n).

In general, for a complex simple Lie algebra \mathfrak g, parabolic subalgebras are in bijection with subsets of simple roots, i.e. subsets of the nodes of the Dynkin diagram.

See also

Bibliography

  • {{citation|first1=Robert J.|last1=Baston|first2=Michael G.|last2=Eastwood|authorlink2=Michael Eastwood|title=The Penrose Transform: its Interaction with Representation Theory|publisher=Dover|orig-year=1989 |year=2016 |url=https://books.google.com/books?id=MEVmDQAAQBAJ |isbn=9780486816623}}
  • {{Fulton-Harris}}
  • {{citation|doi=10.2307/2372388|first=Alexander|last=Grothendieck|author-link=Alexander Grothendieck|year=1957|title=Sur la classification des fibrés holomorphes sur la sphère de Riemann|journal=Amer. J. Math.|volume=79|issue=1|pages=121–138|jstor=2372388}}.
  • {{citation | first=J.|last=Humphreys | title=Linear Algebraic Groups | publisher=Springer | year=1972 | isbn=978-0-387-90108-4}}

Category:Lie algebras

{{algebra-stub}}