Parallelogon

{{Not to be confused with|zonogon|text=zonogon, a polygon with parallel opposite sides, that does not necessarily tile a plane but must be convex}}{{short description|Polygon able to tessellate edge-to-edge, without rotation}}

File:Parallelogons as 2 or 3 vectors.png

File:2d-bravais.svg in two dimensions, related to the parallelogon tessellations by their five symmetry variations.]]

In geometry, a parallelogon is a polygon with parallel opposite sides (hence the name) that can tile a plane by translation (rotation is not permitted).{{Cite journal |last=Grünbaum |first=Branko |date=2010-12-01 |title=The Bilinski Dodecahedron and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra, and Otherhedra |url=https://doi.org/10.1007/s00283-010-9138-7 |journal=The Mathematical Intelligencer |language=en |volume=32 |issue=4 |pages=5–15 |doi=10.1007/s00283-010-9138-7 |hdl=1773/15593 |s2cid=120403108 |issn=1866-7414|hdl-access=free |url-access=subscription }} [http://faculty.washington.edu/moishe/branko/BG285%20Bilinski%20dodecahedron.pdf PDF]

Parallelogons have four or six sides, opposite sides that are equal in length, and 180-degree rotational symmetry around the center. A four-sided parallelogon is a parallelogram.

The three-dimensional analogue of a parallelogon is a parallelohedron. All faces of a parallelohedron are parallelogons.

Two polygonal types

Quadrilateral and hexagonal parallelogons each have varied geometric symmetric forms. They all have central inversion symmetry, order 2. Every convex parallelogon is a zonogon, but hexagonal parallelogons enable the possibility of nonconvex polygons.

class=wikitable

!Sides

colspan=2|ExamplesNameSymmetry
align=center

!rowspan=3|4

|colspan=2|60px

ParallelogramZ2, order 2
align=center

|colspan=2|60px 60px

Rectangle & rhombusDih2, order 4
align=center

|colspan=2|40px

SquareDih4, order 8
align=center

!rowspan=4|6

|60px

50px 60px 60pxElongated
parallelogram
Z2, order 2
align=center

|50px50px

50px50pxElongated
rhombus
Dih2, order 4
align=center

|colspan=2|50px

Regular
hexagon
Dih6, order 12

Geometric variations

A parallelogram can tile the plane as a distorted square tiling while a hexagonal parallelogon can tile the plane as a distorted regular hexagonal tiling.

class=wikitable width=480

|+ Parallelogram tilings

!colspan=2|1 length

!colspan=2|2 lengths

Right

!Skew

!Right

!Skew

align=center

|140px
Square
p4m (*442)

|140px
Rhombus
cmm (2*22)

|140px
Rectangle
pmm (*2222)

|140px
Parallelogram
p2 (2222)

class=wikitable

|+ Hexagonal parallelogon tilings

!1 length

!colspan=2|2 lengths

!colspan=2|3 lengths

valign=top align=center

|140px

|140px

|140px

|140px

|140px

valign=top align=center

|Regular hexagon
p6m (*632)

|colspan=2|Elongated rhombus
cmm (2*22)

|colspan=2|Elongated parallelogram
p2 (2222)

References

{{cite book|author=Aleksandr Danilovich Alexandrov|translator1=N.S. Dairbekov|translator2=S.S. Kutateladze|translator3=A.B. Sosinsky|title=Convex Polyhedra|title-link=Convex Polyhedra (book)|date=2005|orig-date=1950|publisher=Springer|page=[https://books.google.com/books?id=R9vPatr5aqYC&pg=PA351 351]|isbn=3-540-23158-7|issn=1439-7382}}

  • The facts on file: Geometry handbook, Catherine A. Gorini, 2003, {{ISBN|0-8160-4875-4}}, p. 117
  • {{cite book|last1=Grünbaum|first1=Branko|author1-link=Branko Grünbaum|last2=Shephard|first2=G. C.|title=Tilings and Patterns|location=New York|publisher=W. H. Freeman|year=1987|isbn=0-7167-1193-1|url-access=registration|url=https://archive.org/details/isbn_0716711931}} list of 107 isohedral tilings, p. 473-481