Parallelogon
{{Not to be confused with|zonogon|text=zonogon, a polygon with parallel opposite sides, that does not necessarily tile a plane but must be convex}}{{short description|Polygon able to tessellate edge-to-edge, without rotation}}
File:Parallelogons as 2 or 3 vectors.png
File:2d-bravais.svg in two dimensions, related to the parallelogon tessellations by their five symmetry variations.]]
In geometry, a parallelogon is a polygon with parallel opposite sides (hence the name) that can tile a plane by translation (rotation is not permitted).{{Cite journal |last=Grünbaum |first=Branko |date=2010-12-01 |title=The Bilinski Dodecahedron and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra, and Otherhedra |url=https://doi.org/10.1007/s00283-010-9138-7 |journal=The Mathematical Intelligencer |language=en |volume=32 |issue=4 |pages=5–15 |doi=10.1007/s00283-010-9138-7 |hdl=1773/15593 |s2cid=120403108 |issn=1866-7414|hdl-access=free |url-access=subscription }} [http://faculty.washington.edu/moishe/branko/BG285%20Bilinski%20dodecahedron.pdf PDF]
Parallelogons have four or six sides, opposite sides that are equal in length, and 180-degree rotational symmetry around the center. A four-sided parallelogon is a parallelogram.
The three-dimensional analogue of a parallelogon is a parallelohedron. All faces of a parallelohedron are parallelogons.
Two polygonal types
Quadrilateral and hexagonal parallelogons each have varied geometric symmetric forms. They all have central inversion symmetry, order 2. Every convex parallelogon is a zonogon, but hexagonal parallelogons enable the possibility of nonconvex polygons.
class=wikitable
!Sides | colspan=2|Examples | Name | Symmetry |
align=center
!rowspan=3|4 |colspan=2|60px | Parallelogram | Z2, order 2 | |
align=center | Rectangle & rhombus | Dih2, order 4 | |
align=center
|colspan=2|40px | Square | Dih4, order 8 | |
align=center
!rowspan=4|6 |60px | 50px 60px 60px | Elongated parallelogram | Z2, order 2 |
align=center | 50px50px | Elongated rhombus | Dih2, order 4 |
align=center
|colspan=2|50px | Regular hexagon | Dih6, order 12 |
Geometric variations
A parallelogram can tile the plane as a distorted square tiling while a hexagonal parallelogon can tile the plane as a distorted regular hexagonal tiling.
class=wikitable width=480
|+ Parallelogram tilings !colspan=2|1 length !colspan=2|2 lengths |
Right
!Skew !Right !Skew |
---|
align=center
|140px |
class=wikitable
|+ Hexagonal parallelogon tilings !1 length !colspan=2|2 lengths !colspan=2|3 lengths |
valign=top align=center |
valign=top align=center
|Regular hexagon |colspan=2|Elongated rhombus |colspan=2|Elongated parallelogram |
References
- The facts on file: Geometry handbook, Catherine A. Gorini, 2003, {{ISBN|0-8160-4875-4}}, p. 117
- {{cite book|last1=Grünbaum|first1=Branko|author1-link=Branko Grünbaum|last2=Shephard|first2=G. C.|title=Tilings and Patterns|location=New York|publisher=W. H. Freeman|year=1987|isbn=0-7167-1193-1|url-access=registration|url=https://archive.org/details/isbn_0716711931}} list of 107 isohedral tilings, p. 473-481
External links
- [http://www.ams.org/samplings/feature-column/fc-2013-11 Fedorov's Five Parallelohedra]