Pareto front
{{Short description|Set of all Pareto efficient situations}}
In multi-objective optimization, the Pareto front (also called Pareto frontier or Pareto curve) is the set of all Pareto efficient solutions.{{Cite web|last=proximedia|title=Pareto Front|url=http://www.cenaero.be/Page.asp?docid=27103&|access-date=2018-10-08|website=www.cenaero.be|archive-url=https://web.archive.org/web/20200226003108/https://www.cenaero.be/Page.asp?docid=27103&|archive-date=2020-02-26|url-status=dead}} The concept is widely used in engineering.Goodarzi, E., Ziaei, M., & Hosseinipour, E. Z., Introduction to Optimization Analysis in Hydrosystem Engineering (Berlin/Heidelberg: Springer, 2014), [https://books.google.com/books?id=WjS8BAAAQBAJ&pg=PT111 pp. 111–148].{{rp|111–148}} It allows the designer to restrict attention to the set of efficient choices, and to make tradeoffs within this set, rather than considering the full range of every parameter.Jahan, A., Edwards, K. L., & Bahraminasab, M., Multi-criteria Decision Analysis, 2nd ed. (Amsterdam: Elsevier, 2013), [https://books.google.com/books?id=3mreBgAAQBAJ&pg=PA63 pp. 63–65].{{rp|63–65}}Costa, N. R., & Lourenço, J. A., "Exploring Pareto Frontiers in the Response Surface Methodology", in G.-C. Yang, S.-I. Ao, & L. Gelman, eds., Transactions on Engineering Technologies: World Congress on Engineering 2014 (Berlin/Heidelberg: Springer, 2015), [https://books.google.com/books?id=eMElCQAAQBAJ&pg=PA398 pp. 399–412].{{rp|399–412}}
File:Pareto_Efficient_Frontier_1024x1024.png. The red line is an example of a Pareto-efficient frontier, where the frontier and the area left and below it are a continuous set of choices. The red points on the frontier are examples of Pareto-optimal choices of production. Points off the frontier, such as N and K, are not Pareto-efficient, since there exist points on the frontier which Pareto-dominate them.]]
Definition
The Pareto frontier, P(Y), may be more formally described as follows. Consider a system with function , where X is a compact set of feasible decisions in the metric space , and Y is the feasible set of criterion vectors in , such that .
We assume that the preferred directions of criteria values are known. A point is preferred to (strictly dominates) another point , written as . The Pareto frontier is thus written as:
:
Marginal rate of substitution
A significant aspect of the Pareto frontier in economics is that, at a Pareto-efficient allocation, the marginal rate of substitution is the same for all consumers.{{Cite book|last=Just, Richard E.|url=https://www.worldcat.org/oclc/58538348|title=The welfare economics of public policy : a practical approach to project and policy evaluation|publisher=E. Elgar|others=Hueth, Darrell L., Schmitz, Andrew.|year=2004|isbn=1-84542-157-4|location=Cheltenham, UK|pages=18–21|oclc=58538348}} A formal statement can be derived by considering a system with m consumers and n goods, and a utility function of each consumer as where is the vector of goods, both for all i. The feasibility constraint is for . To find the Pareto optimal allocation, we maximize the Lagrangian:
:
where and are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good for and gives the following system of first-order conditions:
:
:
where denotes the partial derivative of with respect to . Now, fix any and . The above first-order condition imply that
:
Thus, in a Pareto-optimal allocation, the marginal rate of substitution must be the same for all consumers.{{Citation needed|date=July 2020}}
Computation
Algorithms for computing the Pareto frontier of a finite set of alternatives have been studied in computer science and power engineering.{{cite journal|last1=Tomoiagă|first1=Bogdan|last2=Chindriş|first2=Mircea|last3=Sumper|first3=Andreas|last4=Sudria-Andreu|first4=Antoni|last5=Villafafila-Robles|first5=Roberto|year=2013|title=Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II|journal=Energies|volume=6|issue=3|pages=1439–55|doi=10.3390/en6031439|doi-access=free|hdl=2117/18257|hdl-access=free}} They include:
- "The maxima of a point set"
- "The maximum vector problem" or the skyline query{{cite journal|last1=Nielsen|first1=Frank|year=1996|title=Output-sensitive peeling of convex and maximal layers|journal=Information Processing Letters|volume=59|issue=5|pages=255–9|citeseerx=10.1.1.259.1042|doi=10.1016/0020-0190(96)00116-0}}{{cite journal|last1=Kung|first1=H. T.|last2=Luccio|first2=F.|last3=Preparata|first3=F.P.|year=1975|title=On finding the maxima of a set of vectors|journal=Journal of the ACM|volume=22|issue=4|pages=469–76|doi=10.1145/321906.321910|s2cid=2698043|doi-access=free}}{{cite journal|last1=Godfrey|first1=P.|last2=Shipley|first2=R.|last3=Gryz|first3=J.|year=2006|title=Algorithms and Analyses for Maximal Vector Computation|journal=VLDB Journal|volume=16|pages=5–28|citeseerx=10.1.1.73.6344|doi=10.1007/s00778-006-0029-7|s2cid=7374749}}
- "The scalarization algorithm" or the method of weighted sums{{cite journal|last1=Kim|first1=I. Y.|last2=de Weck|first2=O. L.|year=2005|title=Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation|journal=Structural and Multidisciplinary Optimization|volume=31|issue=2|pages=105–116|doi=10.1007/s00158-005-0557-6|issn=1615-147X|s2cid=18237050}}{{cite journal|last1=Marler|first1=R. Timothy|last2=Arora|first2=Jasbir S.|year=2009|title=The weighted sum method for multi-objective optimization: new insights|journal=Structural and Multidisciplinary Optimization|volume=41|issue=6|pages=853–862|doi=10.1007/s00158-009-0460-7|issn=1615-147X|s2cid=122325484}}
- "The -constraints method"{{cite journal|year=1971|title=On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization|journal=IEEE Transactions on Systems, Man, and Cybernetics|volume=SMC-1|issue=3|pages=296–297|doi=10.1109/TSMC.1971.4308298|issn=0018-9472}}{{cite journal|last1=Mavrotas|first1=George|year=2009|title=Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems|journal=Applied Mathematics and Computation|volume=213|issue=2|pages=455–465|doi=10.1016/j.amc.2009.03.037|issn=0096-3003}}{{cite journal |last1=Carvalho |first1=Iago A. |last2=Coco |first2=Amadeu A. |title=On solving bi-objective constrained minimum spanning tree problems |journal=Journal of Global Optimization |date=September 2023 |volume=87 |issue=1 |pages=301–323 |doi=10.1007/s10898-023-01295-8}}
- Multi-objective Evolutionary Algorithms {{cite journal |last1=Zhang |first1=Qingfu |last2=Hui |first2=Li |title=MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition |journal=IEEE Transactions on Evolutionary Computation |date=December 2007 |volume=11 |issue=6 |pages=712–731 |doi=10.1109/TEVC.2007.892759}}{{cite journal |last1=Carvalho |first1=Iago A. |last2=Ribeiro |first2=Marco A. |title=A node-depth phylogenetic-based artificial immune system for multi-objective Network Design Problems |journal=Swarm and Evolutionary Computation |date=November 2019 |volume=50 |page=100491 |doi=10.1016/j.swevo.2019.01.007}}
Approximations
Since generating the entire Pareto front is often computationally-hard, there are algorithms for computing an approximate Pareto-front. For example, Legriel et al.{{Cite book|last1=Legriel|first1=Julien|last2=Le Guernic|first2=Colas|last3=Cotton|first3=Scott|last4=Maler|first4=Oded|date=2010|editor-last=Esparza|editor-first=Javier|editor2-last=Majumdar|editor2-first=Rupak|chapter=Approximating the Pareto Front of Multi-criteria Optimization Problems|title=Tools and Algorithms for the Construction and Analysis of Systems|series=Lecture Notes in Computer Science|volume=6015 |language=en|location=Berlin, Heidelberg|publisher=Springer|pages=69–83|doi=10.1007/978-3-642-12002-2_6|isbn=978-3-642-12002-2|doi-access=free}} call a set S an ε-approximation of the Pareto-front P, if the directed Hausdorff distance between S and P is at most ε. They observe that an ε-approximation of any Pareto front P in d dimensions can be found using (1/ε)d queries.
Zitzler, Knowles and Thiele{{Citation|last1=Zitzler|first1=Eckart|title=Quality Assessment of Pareto Set Approximations|date=2008|url=https://doi.org/10.1007/978-3-540-88908-3_14|work=Multiobjective Optimization: Interactive and Evolutionary Approaches|pages=373–404|editor-last=Branke|editor-first=Jürgen|series=Lecture Notes in Computer Science|place=Berlin, Heidelberg|publisher=Springer|language=en|doi=10.1007/978-3-540-88908-3_14|isbn=978-3-540-88908-3|access-date=2021-10-08|last2=Knowles|first2=Joshua|last3=Thiele|first3=Lothar|editor2-last=Deb|editor2-first=Kalyanmoy|editor3-last=Miettinen|editor3-first=Kaisa|editor4-last=Słowiński|editor4-first=Roman}} compare several algorithms for Pareto-set approximations on various criteria, such as invariance to scaling, monotonicity, and computational complexity.