Parseval–Gutzmer formula
In mathematics, the Parseval–Gutzmer formula states that, if is an analytic function on a closed disk of radius r with Taylor series
:
then for z = reiθ on the boundary of the disk,
:
which may also be written as
:
Proof
The Cauchy Integral Formula for coefficients states that for the above conditions:
:
where γ is defined to be the circular path around origin of radius r. Also for we have: Applying both of these facts to the problem starting with the second fact:
:
\int^{2\pi}_0 \left |f \left (re^{i\theta} \right ) \right |^2 \, \mathrm{d}\theta &= \int^{2\pi}_0 f \left (re^{i\theta} \right ) \overline{f \left (re^{i\theta} \right )} \, \mathrm{d}\theta\\[6pt]
&= \int^{2\pi}_0 f \left (re^{i\theta} \right ) \left (\sum^\infty_{k = 0} \overline{a_k \left (re^{i\theta} \right )^k} \right ) \, \mathrm{d}\theta && \text{Using Taylor expansion on the conjugate} \\[6pt]
&= \int^{2\pi}_0 f \left (re^{i\theta} \right ) \left (\sum^\infty_{k = 0} \overline{a_k} \left (re^{-i\theta} \right )^k \right ) \, \mathrm{d}\theta \\[6pt]
&= \sum^\infty_{k = 0} \int^{2\pi}_0 f \left (re^{i\theta} \right ) \overline{a_k} \left (re^{-i\theta} \right )^k \, \mathrm{d} \theta && \text{Uniform convergence of Taylor series} \\[6pt]
&= \sum^\infty_{k = 0} \left (2\pi \overline{a_k} r^{2k} \right ) \left (\frac{1}{2{\pi}i}\int^{2\pi}_0 \frac{f \left (re^{i\theta} \right )}{(r e^{i\theta})^{k+1}} {rie^{i\theta}} \right ) \mathrm{d}\theta \\
& = \sum^\infty_{k = 0} \left (2\pi \overline{a_k} r^{2k} \right ) a_k && \text{Applying Cauchy Integral Formula} \\
& = {2\pi} \sum^\infty_{k = 0} {|a_k|^2 r^{2k}}
\end{align}
Further Applications
Using this formula, it is possible to show that
:
where
:
This is done by using the integral
:
References
- {{cite book|title = Complex Analysis|authorlink = Lars Ahlfors|first = Lars|last = Ahlfors|publisher = McGraw–Hill|year = 1979 | isbn = 0-07-085008-9}}
{{DEFAULTSORT:Parseval-Gutzmer formula}}
Category:Theorems in complex analysis
{{mathanalysis-stub}}