Pascal's simplex

{{merge to|Pascal's pyramid|discuss=Talk:Pascal's pyramid#Merge proposal|date=December 2024}}

{{Unreferenced|date=October 2020}}

File:Pascal_pyramid_3d.svg). Each face (orange grid) is Pascal's 2-simplex (Pascal's triangle). Arrows show derivation of two example terms.]]

In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem.

Generic Pascal's ''m''-simplex

Let m ({{nowrap|m > 0}}) be a number of terms of a polynomial and n ({{nowrap|n ≥ 0}}) be a power the polynomial is raised to.

Let {{tmath|\wedge}}m denote a Pascal's m-simplex. Each Pascal's m-simplex is a semi-infinite object, which consists of an infinite series of its components.

Let {{tmath|\wedge}}{{su|lh=0.8em|p=m|b=n}} denote its nth component, itself a finite {{nowrap|(m − 1)}}-simplex with the edge length n, with a notational equivalent \vartriangle^{m-1}_n.

= ''n''th component =

\wedge^m_n = \vartriangle^{m-1}_n consists of the coefficients of multinomial expansion of a polynomial with m terms raised to the power of n:

: |x|^n=\sum_{|k|=n}{\binom{n}{k}x^k};\ \ x\in\mathbb{R}^m,\ k\in\mathbb{N}^m_0,\ n\in\mathbb{N}_0,\ m\in\mathbb{N}

where \textstyle|x|=\sum_{i=1}^m{x_i},\ |k|=\sum_{i=1}^m{k_i},\ x^k=\prod_{i=1}^m{x_i^{k_i}}.

= Example for ⋀<sup>4</sup> =

Pascal's 4-simplex {{OEIS|id=A189225}}, sliced along the k4. All points of the same color belong to the same nth component, from red (for {{nowrap|1=n = 0}}) to blue (for {{nowrap|1=n = 3}}).

File:Simplex-4.svg

Specific Pascal's simplices

= Pascal's 1-simplex =

{{tmath|\wedge}}1 is not known by any special name.

File:Simplex-1.svg

== ''n''th component ==

\wedge^1_n = \vartriangle^0_n (a point) is the coefficient of multinomial expansion of a polynomial with 1 term raised to the power of n:

: (x_1)^n = \sum_{k_1=n} {n \choose k_1} x_1^{k_1};\ \ k_1, n \in \mathbb{N}_0

=== Arrangement of <math>\vartriangle^0_n</math> ===

: \textstyle {n \choose n}

which equals 1 for all n.

= Pascal's 2-simplex =

\wedge^2 is known as Pascal's triangle {{OEIS|id=A007318}}.

File:Simplex-2.svg

== ''n''th component ==

\wedge^2_n = \vartriangle^1_n (a line) consists of the coefficients of binomial expansion of a polynomial with 2 terms raised to the power of n:

: (x_1 + x_2)^n = \sum_{k_1+k_2=n} {n \choose k_1, k_2} x_1^{k_1} x_2^{k_2};\ \ k_1, k_2, n \in \mathbb{N}_0

=== Arrangement of <math>\vartriangle^1_n</math> ===

: \textstyle {n \choose n, 0}, {n \choose n - 1, 1}, \ldots, {n \choose 1, n - 1}, {n \choose 0, n}

= Pascal's 3-simplex =

\wedge^3 is known as Pascal's tetrahedron {{OEIS|id=A046816}}.

File:Simplex-3.svg

== ''n''th component ==

\wedge^3_n = \vartriangle^2_n (a triangle) consists of the coefficients of trinomial expansion of a polynomial with 3 terms raised to the power of n:

: (x_1 + x_2 + x_3)^n = \sum_{k_1+k_2+k_3=n} {n \choose k_1, k_2, k_3} x_1^{k_1} x_2^{k_2} x_3^{k_3};\ \ k_1, k_2, k_3, n \in \mathbb{N}_0

=== Arrangement of <math>\vartriangle^2_n</math> ===

:

\begin{align}

\textstyle {n \choose n, 0, 0} &, \textstyle {n \choose n - 1, 1, 0}, \ldots\ldots, {n \choose 1, n - 1, 0}, {n \choose 0, n, 0}\\

\textstyle {n \choose n - 1, 0, 1} &, \textstyle {n \choose n - 2, 1, 1}, \ldots\ldots, {n \choose 0, n - 1, 1}\\

&\vdots\\

\textstyle {n \choose 1, 0, n - 1} &, \textstyle {n \choose 0, 1, n - 1}\\

\textstyle {n \choose 0, 0, n}

\end{align}

Properties

= Inheritance of components =

\wedge^m_n = \vartriangle^{m-1}_n is numerically equal to each {{nowrap|(m − 1)}}-face (there is {{nowrap|m + 1}} of them) of \vartriangle^m_n = \wedge^{m+1}_n, or:

: \wedge^m_n = \vartriangle^{m-1}_n \subset\ \vartriangle^m_n = \wedge^{m+1}_n

From this follows, that the whole \wedge^m is {{nowrap|(m + 1)}}-times included in \wedge^{m+1}, or:

: \wedge^m \subset \wedge^{m+1}

== Example ==

class="wikitable"

!

!\wedge^1

!\wedge^2

!\wedge^3

!\wedge^4

\wedge^m_0

|

 1 

|

   1

|

   1

|

   1
\wedge^m_1

|

 1 

|

  1 1

|

  1 1

1

|

  1 1        1

1

\wedge^m_2

|

 1 

|

 1 2 1

|

 1 2 1

2 2

1

|

 1 2 1      2 2      1

2 2 2

1

\wedge^m_3

|

 1 

|

1 3 3 1

|

1 3 3 1

3 6 3

3 3

1

|

1 3 3 1    3 6 3    3 3    1

3 6 3 6 6 3

3 3 3

1

For more terms in the above array refer to {{OEIS|id=A191358}}

= Equality of sub-faces =

Conversely, \wedge^{m+1}_n = \vartriangle^m_n is ({{nowrap|m + 1)}}-times bounded by \vartriangle^{m-1}_n = \wedge^m_n, or:

: \wedge^{m+1}_n = \vartriangle^m_n \supset \vartriangle^{m-1}_n = \wedge^m_n

From this follows, that for given n, all i-faces are numerically equal in nth components of all Pascal's ({{nowrap|m > i}})-simplices, or:

: \wedge^{i+1}_n = \vartriangle^i_n \subset \vartriangle^{m>i}_n = \wedge^{m>i+1}_n

== Example ==

The 3rd component (2-simplex) of Pascal's 3-simplex is bounded by 3 equal 1-faces (lines). Each 1-face (line) is bounded by 2 equal 0-faces (vertices):

2-simplex 1-faces of 2-simplex 0-faces of 1-face

1 3 3 1 1 . . . . . . 1 1 3 3 1 1 . . . . . . 1

3 6 3 3 . . . . 3 . . .

3 3 3 . . 3 . .

1 1 1 .

Also, for all m and all n:

: 1 = \wedge^1_n = \vartriangle^0_n \subset \vartriangle^{m-1}_n = \wedge^m_n

= Number of coefficients =

For the nth component ({{nowrap|(m − 1)}}-simplex) of Pascal's m-simplex, the number of the coefficients of multinomial expansion it consists of is given by:

: {(n-1) + (m-1) \choose (m-1)} + {n + (m - 2) \choose (m - 2)} = {n + (m - 1) \choose (m - 1)} = \left(\!\! \binom{m}{n} \!\!\right),

(where the latter is the multichoose notation). We can see this either as a sum of the number of coefficients of an {{nowrap|(n − 1)}}th component ({{nowrap|(m − 1)}}-simplex) of Pascal's m-simplex with the number of coefficients of an nth component ({{nowrap|(m − 2)}}-simplex) of Pascal's {{nowrap|(m − 1)}}-simplex, or by a number of all possible partitions of an nth power among m exponents.

== Example ==

class="wikitable"

|+ Number of coefficients of nth component ({{nowrap|(m − 1)}}-simplex) of Pascal's m-simplex

align="right"

! m-simplex !! nth component !! n = 0 !! n = 1 !! n = 2 !! n = 3 !! n = 4 !! n = 5

align="right"

| align="center" | 1-simplex

! 0-simplex

| 1

11111
align="right"

| align="center" | 2-simplex

! 1-simplex

| 1

23456
align="right"

| align="center" | 3-simplex

! 2-simplex

| 1

36101521
align="right"

| align="center" | 4-simplex

! 3-simplex

| 1

410203556
align="right"

| align="center" | 5-simplex

! 4-simplex

| 1

5153570126
align="right"

| align="center" | 6-simplex

! 5-simplex

| 1

62156126252

The terms of this table comprise a Pascal triangle in the format of a symmetric Pascal matrix.

= Symmetry =

An nth component ({{nowrap|(m − 1)}}-simplex) of Pascal's m-simplex has the (m!)-fold spatial symmetry.

= Geometry =

Orthogonal axes k1, ..., km in m-dimensional space, vertices of component at n on each axis, the tip at {{nowrap|[0, ..., 0]}} for {{nowrap|1=n = 0}}.

= Numeric construction =

Wrapped nth power of a big number gives instantly the nth component of a Pascal's simplex.

: \left|b^{dp}\right|^n=\sum_{|k|=n}{\binom{n}{k}b^{dp\cdot k}};\ \ b,d\in\mathbb{N},\ n\in\mathbb{N}_0,\ k,p\in\mathbb{N}_0^m,\ p:\ p_1=0, p_i=(n+1)^{i-2}

where \textstyle b^{dp} = (b^{dp_1},\cdots,b^{dp_m})\in\mathbb{N}^m,\ p\cdot k={\sum_{i=1}^m{p_i k_i}}\in\mathbb{N}_0.

Category:Factorial and binomial topics

Category:Triangles of numbers