Pentic 6-cubes#Pentic 6-cube

class=wikitable align=right width=480 style="margin-left:1em;"
align=center valign=top

|160px
6-demicube
(half 6-cube)
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node}}

|160px
Pentic 6-cube
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1}}

|160px
Penticantic 6-cube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1}}

align=center valign=top

|160px
Pentiruncic 6-cube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1}}

|160px
Pentiruncicantic 6-cube
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1}}

|160px
Pentisteric 6-cube
{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1}}

align=center valign=top

|160px
Pentistericantic 6-cube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1}}

|160px
Pentisteriruncic 6-cube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}}

|160px
Pentisteriruncicantic 6-cube
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}

colspan=3|Orthogonal projections in D5 Coxeter plane

In six-dimensional geometry, a pentic 6-cube is a convex uniform 6-polytope.

There are 8 pentic forms of the 6-cube.

{{TOC left}}

{{Clear}}

Pentic 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentic 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,4{3,34,1}
h5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges1440
bgcolor=#e7dcc3|Vertices192
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The pentic 6-cube, {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1}}, has half of the vertices of a pentellated 6-cube, {{CDD|node_1|4|node|3|node|3|node|3|node|3|node_1}}.

= Alternate names =

  • Stericated 6-demicube
  • Stericated demihexeract
  • Small cellated hemihexeract (Acronym: sochax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/sochax.htm (x3o3o *b3o3x3o3o - sochax)]}}

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±1,±1,±1,±3)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t04|150}}

Penticantic 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Penticantic 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,1,4{3,34,1}
h2,5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges9600
bgcolor=#e7dcc3|Vertices1920
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The penticantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1}}, has half of the vertices of a penticantellated 6-cube, {{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node_1}}.

= Alternate names =

  • Steritruncated 6-demicube
  • Steritruncated demihexeract
  • Cellitruncated hemihexeract (Acronym: cathix) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/cathix.htm (x3x3o *b3o3x3o3o - cathix)]}}

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±3,±3,±3,±5)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t014|150}}

Pentiruncic 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentiruncic 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,2,4{3,34,1}
h3,5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges10560
bgcolor=#e7dcc3|Vertices1920
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The pentiruncic 6-cube, {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1}}, has half of the vertices of a pentiruncinated 6-cube (penticantellated 6-orthoplex), {{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node_1}}.

= Alternate names =

  • Stericantellated 6-demicube
  • Stericantellated demihexeract
  • Cellirhombated hemihexeract (Acronym: crohax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/crohax.htm (x3o3o *b3x3x3o3o - crohax)]}}

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±1,±3,±3,±5)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t024|150}}

Pentiruncicantic 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentiruncicantic 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,1,2,4{3,32,1}
h2,3,5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges20160
bgcolor=#e7dcc3|Vertices5760
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The pentiruncicantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1}}, has half of the vertices of a pentiruncicantellated 6-cube or (pentiruncicantellated 6-orthoplex), {{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node_1}}

= Alternate names =

  • Stericantitruncated demihexeract
  • Stericantitruncated 6-demicube
  • Great cellated hemihexeract (Acronym: cagrohax) (Jonathan Bowers)Klitzing, (x3x3o *b3x3x3o3o - cagrohax)

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t0124|150}}

Pentisteric 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentisteric 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,3,4{3,34,1}
h4,5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges5280
bgcolor=#e7dcc3|Vertices960
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The pentisteric 6-cube, {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1}}, has half of the vertices of a pentistericated 6-cube (pentitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node_1}}

= Alternate names =

  • Steriruncinated 6-demicube
  • Steriruncinated demihexeract
  • Small celliprismated hemihexeract (Acronym: cophix) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/cophix.htm (x3o3o *b3o3x3x3x - cophix)]}}

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±1,±1,±3,±5)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t034|150}}

Pentistericantic 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentistericantic 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,1,3,4{3,34,1}
h2,4,5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges23040
bgcolor=#e7dcc3|Vertices5760
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The pentistericantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1}}, has half of the vertices of a pentistericantellated 6-cube (pentiruncitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node_1}}.

= Alternate names =

  • Steriruncitruncated demihexeract
  • Steriruncitruncated 6-demicube
  • Cellitruncated hemihexeract (Acronym: capthix) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/capthix.htm (x3x3o *b3o3x3x3x - capthix)]}}

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t0134|150}}

Pentisteriruncic 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentisteriruncic 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,2,3,4{3,34,1}
h3,4,5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges15360
bgcolor=#e7dcc3|Vertices3840
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The pentisteriruncic 6-cube, {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}}, has half of the vertices of a pentisteriruncinated 6-cube (penticantitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node_1}}.

= Alternate names =

  • Steriruncicantellated 6-demicube
  • Steriruncicantellated demihexeract
  • Celliprismatorhombated hemihexeract (Acronym: caprohax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/caprohax.htm (x3o3o *b3x3x3x3x - caprohax)]}}

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±1,±3,±5,±7)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t0234|150}}

Pentisteriruncicantic 6-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentisteriruncicantic 6-cube

bgcolor=#e7dcc3|Typeuniform 6-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,1,2,3,4{3,32,1}
h2,3,4,5{4,34}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges34560
bgcolor=#e7dcc3|Vertices11520
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD6, [33,1,1]
bgcolor=#e7dcc3|Propertiesconvex

The pentisteriruncicantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}, has half of the vertices of a pentisteriruncicantellated 6-cube (pentisteriruncicantitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}.

= Alternate names =

  • Steriruncicantitruncated 6-demicube/demihexeract
  • Great cellated hemihexeract (Acronym: gochax) (Jonathan Bowers)Klitzing, (x3x3o *b3x3x3x3o - gochax)

= Cartesian coordinates =

The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:

: (±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

= Images =

{{6-demicube Coxeter plane graphs|t01234|150}}

Related polytopes

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:

{{Demihexeract_family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} x3o3o *b3o3x3o3o - sochax, x3x3o *b3o3x3o3o - cathix, x3o3o *b3x3x3o3o - crohax, x3x3o *b3x3x3o3o - cagrohax, x3o3o *b3o3x3x3x - cophix, x3x3o *b3o3x3x3x - capthix, x3o3o *b3x3x3x3x - caprohax, x3x3o *b3x3x3x3o - gochax {{sfn whitelist| CITEREFKlitzing}}