Pentic 6-cubes#Pentic 6-cube
class=wikitable align=right width=480 style="margin-left:1em;" |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
colspan=3|Orthogonal projections in D5 Coxeter plane |
---|
In six-dimensional geometry, a pentic 6-cube is a convex uniform 6-polytope.
There are 8 pentic forms of the 6-cube.
{{TOC left}}
{{Clear}}
Pentic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Pentic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,4{3,34,1} h5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 1440 |
bgcolor=#e7dcc3|Vertices | 192 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The pentic 6-cube, {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1}}, has half of the vertices of a pentellated 6-cube, {{CDD|node_1|4|node|3|node|3|node|3|node|3|node_1}}.
= Alternate names =
- Stericated 6-demicube
- Stericated demihexeract
- Small cellated hemihexeract (Acronym: sochax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/sochax.htm (x3o3o *b3o3x3o3o - sochax)]}}
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±1,±1,±1,±3)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t04|150}}
Penticantic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Penticantic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,4{3,34,1} h2,5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 9600 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The penticantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1}}, has half of the vertices of a penticantellated 6-cube, {{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node_1}}.
= Alternate names =
- Steritruncated 6-demicube
- Steritruncated demihexeract
- Cellitruncated hemihexeract (Acronym: cathix) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/cathix.htm (x3x3o *b3o3x3o3o - cathix)]}}
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±3,±3,±3,±5)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t014|150}}
Pentiruncic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Pentiruncic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,4{3,34,1} h3,5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 10560 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The pentiruncic 6-cube, {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1}}, has half of the vertices of a pentiruncinated 6-cube (penticantellated 6-orthoplex), {{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node_1}}.
= Alternate names =
- Stericantellated 6-demicube
- Stericantellated demihexeract
- Cellirhombated hemihexeract (Acronym: crohax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/crohax.htm (x3o3o *b3x3x3o3o - crohax)]}}
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±1,±3,±3,±5)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t024|150}}
Pentiruncicantic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Pentiruncicantic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,4{3,32,1} h2,3,5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 20160 |
bgcolor=#e7dcc3|Vertices | 5760 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The pentiruncicantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1}}, has half of the vertices of a pentiruncicantellated 6-cube or (pentiruncicantellated 6-orthoplex), {{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node_1}}
= Alternate names =
- Stericantitruncated demihexeract
- Stericantitruncated 6-demicube
- Great cellated hemihexeract (Acronym: cagrohax) (Jonathan Bowers)Klitzing, (x3x3o *b3x3x3o3o - cagrohax)
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±3,±3,±5,±7)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t0124|150}}
Pentisteric 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Pentisteric 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,3,4{3,34,1} h4,5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 5280 |
bgcolor=#e7dcc3|Vertices | 960 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The pentisteric 6-cube, {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1}}, has half of the vertices of a pentistericated 6-cube (pentitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node_1}}
= Alternate names =
- Steriruncinated 6-demicube
- Steriruncinated demihexeract
- Small celliprismated hemihexeract (Acronym: cophix) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/cophix.htm (x3o3o *b3o3x3x3x - cophix)]}}
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±1,±1,±3,±5)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t034|150}}
Pentistericantic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Pentistericantic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3,4{3,34,1} h2,4,5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 23040 |
bgcolor=#e7dcc3|Vertices | 5760 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The pentistericantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1}}, has half of the vertices of a pentistericantellated 6-cube (pentiruncitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node_1}}.
= Alternate names =
- Steriruncitruncated demihexeract
- Steriruncitruncated 6-demicube
- Cellitruncated hemihexeract (Acronym: capthix) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/capthix.htm (x3x3o *b3o3x3x3x - capthix)]}}
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±3,±3,±5,±7)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t0134|150}}
Pentisteriruncic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Pentisteriruncic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,3,4{3,34,1} h3,4,5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 15360 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The pentisteriruncic 6-cube, {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1}}, has half of the vertices of a pentisteriruncinated 6-cube (penticantitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node_1}}.
= Alternate names =
- Steriruncicantellated 6-demicube
- Steriruncicantellated demihexeract
- Celliprismatorhombated hemihexeract (Acronym: caprohax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/caprohax.htm (x3o3o *b3x3x3x3x - caprohax)]}}
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±1,±3,±5,±7)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t0234|150}}
Pentisteriruncicantic 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Pentisteriruncicantic 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3,4{3,32,1} h2,3,4,5{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 34560 |
bgcolor=#e7dcc3|Vertices | 11520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The pentisteriruncicantic 6-cube, {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}, has half of the vertices of a pentisteriruncicantellated 6-cube (pentisteriruncicantitruncated 6-orthoplex), {{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node_1}}.
= Alternate names =
- Steriruncicantitruncated 6-demicube/demihexeract
- Great cellated hemihexeract (Acronym: gochax) (Jonathan Bowers)Klitzing, (x3x3o *b3x3x3x3o - gochax)
= Cartesian coordinates =
The Cartesian coordinates for the vertices, centered at the origin are coordinate permutations:
: (±1,±1,±3,±3,±5,±7)
with an odd number of plus signs.
= Images =
{{6-demicube Coxeter plane graphs|t01234|150}}
Related polytopes
There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:
{{Demihexeract_family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} x3o3o *b3o3x3o3o - sochax, x3x3o *b3o3x3o3o - cathix, x3o3o *b3x3x3o3o - crohax, x3x3o *b3x3x3o3o - cagrohax, x3o3o *b3o3x3x3x - cophix, x3x3o *b3o3x3x3x - capthix, x3o3o *b3x3x3x3x - caprohax, x3x3o *b3x3x3x3o - gochax {{sfn whitelist| CITEREFKlitzing}}
External links
- {{MathWorld|title=Hypercube|urlname=Hypercube}}
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}