Peptoid nanosheet

{{Short description|Synthetic protein structure made from peptoids}}File:Peptoid Nanosheets, fluorescent microscopy, June 2013.jpg above}}Fluorescent microscopy image of peptoid nanosheets viewed using Nile Red dye.]]

In nanobiotechnology, a peptoid nanosheet is a synthetic protein structure made from peptoids. Peptoid nanosheets have a thickness of about three nanometers and a length of up to 100 micrometers, meaning that they have a two-dimensional, flat shape that resembles paper on the nanoscale.{{cite journal | last1=Nam | first1=Ki Tae | last2=Shelby | first2=Sarah A. | last3=Choi | first3=Philip H. | last4=Marciel | first4=Amanda B. | last5=Chen | first5=Ritchie | last6=Tan | first6=Li | last7=Chu | first7=Tammy K. | last8=Mesch | first8=Ryan A. | last9=Lee | first9=Byoung-Chul | last10=Connolly | first10=Michael D. | last11=Kisielowski | first11=Christian | last12=Zuckermann | first12=Ronald N. |display-authors=5| title=Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers | journal=Nature Materials | publisher=Springer Science and Business Media LLC | volume=9 | issue=5 | date=2010-04-11 | issn=1476-1122 | doi=10.1038/nmat2742 | pages=454–460|pmid=20383129| bibcode=2010NatMa...9..454N }}{{cite journal | vauthors = Mannige RV, Haxton TK, Proulx C, Robertson EJ, Battigelli A, Butterfoss GL, Zuckermann RN, Whitelam S | display-authors = 6 | title = Peptoid nanosheets exhibit a new secondary-structure motif | journal = Nature | volume = 526 | issue = 7573 | pages = 415–420 | date = October 2015 | pmid = 26444241 | doi = 10.1038/nature15363 | s2cid = 205245623 | bibcode = 2015Natur.526..415M | url = https://zenodo.org/record/1233337 }}

Synthesis

For assembly, a purified amphiphilic polypeptoid of specific sequence is dissolved in aqueous solution.{{cite journal | last1=Kudirka | first1=Romas | last2=Tran | first2=Helen | last3=Sanii | first3=Babak | last4=Nam | first4=Ki Tae | last5=Choi | first5=Philip H. | last6=Venkateswaran | first6=Neeraja | last7=Chen | first7=Ritchie | last8=Whitelam | first8=Stephen | last9=Zuckermann | first9=Ronald N. |display-authors=5| title=Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet | journal=Biopolymers | publisher=Wiley | volume=96 | issue=5 | year=2011 | issn=0006-3525 | doi=10.1002/bip.21590 | pages=586–595|pmid=22180906}} These form a monolayer (Langmuir–Blodgett film) on the air-water interface with their hydrophobic side chains oriented in air and hydrophilic side chains in the water. When this mono-layer is shrunk, it buckles into a bilayer with the hydrophobic groups forming the interior core of the peptoid nanosheet.{{cite journal | last1=Sanii | first1=Babak | last2=Kudirka | first2=Romas | last3=Cho | first3=Andrew | last4=Venkateswaran | first4=Neeraja | last5=Olivier | first5=Gloria K. | last6=Olson | first6=Alexander M. | last7=Tran | first7=Helen | last8=Harada | first8=R. Marika | last9=Tan | first9=Li | last10=Zuckermann | first10=Ronald N. |display-authors=5| title=Shaken, Not Stirred: Collapsing a Peptoid Monolayer To Produce Free-Floating, Stable Nanosheets | journal=Journal of the American Chemical Society | publisher=American Chemical Society (ACS) | volume=133 | issue=51 | date=2011-10-12 | issn=0002-7863 | doi=10.1021/ja206199d | pages=20808–20815|pmid=21939206}} This method has been standardized by repetitively tilting vials of peptoid solution at 85° before returning the vials to the upright position. This repetitive vial “rocking” motion lessens the interfacial area of the air-water interface inside the vial, compressing the peptoid mono-layer by a factor of four and causing the mono-layer to buckle into peptoid nanosheets. Using this method, nanosheets are produced in high yield, and 95% of the peptoid polymer starting material is efficiently converted into peptoid nanosheets after rocking the vials several hundred times.

Applications

Peptoid nanosheets have a very high surface area, which can be readily functionalized to serve as a platform for sensing and templating.{{cite journal | last1=Olivier | first1=Gloria K. | last2=Cho | first2=Andrew | last3=Sanii | first3=Babak | last4=Connolly | first4=Michael D. | last5=Tran | first5=Helen | last6=Zuckermann | first6=Ronald N. | title=Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition | journal=ACS Nano | publisher=American Chemical Society (ACS) | volume=7 | issue=10 | date=2013-09-18 | issn=1936-0851 | doi=10.1021/nn403899y | pages=9276–9286|pmid=24016337}} Also, their hydrophobic interiors can accommodate hydrophobic small molecule cargos, which have been demonstrated by the sequestration of Nile red when this dye was injected into an aqueous solution of the peptoid nanosheets.{{cite journal | last1=Tran | first1=Helen | last2=Gael | first2=Sarah L. | last3=Connolly | first3=Michael D. | last4=Zuckermann | first4=Ronald N. | title=Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets | journal=Journal of Visualized Experiments | publisher=MyJove Corporation | issue=57 | date=2011-11-02 | issn=1940-087X | doi=10.3791/3373 | page=e3373|pmid=22083233|pmc=3308608 }} For these reasons, the hydrophobic interior of the 2D nanosheets could be an attractive platform for loading or embedding hydrophobic cargo, such as drug molecules, fluorophores, aromatic compounds, and metal nanoparticles.

See also

References